版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
黑龙江省齐齐哈尔克山县联考2025届九年级数学第一学期期末监测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.抛物线的开口方向是()A.向下 B.向上 C.向左 D.向右2.如图:已知CD为⊙O的直径,过点D的弦DE∥OA,∠D=50°,则∠C的度数是()A.25° B.40° C.30° D.50°3.如图,已知直线a∥b∥c,直线m交直线a,b,c于点A,B,C,直线n交直线a,b,c于点D,E,F,若,则=()A. B. C. D.14.如图,在△ABC中,∠BAC的平分线AD与∠ACB的平分线CE交于点O,下列说法正确的是()A.点O是△ABC的内切圆的圆心B.CE⊥ABC.△ABC的内切圆经过D,E两点D.AO=CO5.设A(﹣2,y1)、B(1,y2)、C(2,y3)是双曲线上的三点,则()A.y1>y2>y3 B.y1>y3>y2 C.y3>y2>y1 D.y3>y1>y26.已知关于x的一元二次方程有两个不相等的实数根,则k的取值范围是()A.k>-3 B.k≥-3 C.k≥0 D.k≥17.如图,点A、B、C都在⊙O上,若∠AOC=140°,则∠B的度数是()A.70° B.80° C.110° D.140°8.若,则的值是()A. B. C. D.9.如图,已知抛物线y1=x1-1x,直线y1=-1x+b相交于A,B两点,其中点A的横坐标为1.当x任取一值时,x对应的函数值分别为y1,y1,取m=(|y1-y1|+y1+y1).则()A.当x<-1时,m=y1 B.m随x的增大而减小C.当m=1时,x=0 D.m≥-110.在平面直角坐标系中,点P(–2,3)关于原点对称的点Q的坐标为()A.(2,–3) B.(2,3) C.(3,–2) D.(–2,–3)11.如图,点P在△ABC的边AC上,要判断△ABP∽△ACB,添加一个条件,不正确的是()A.∠ABP=∠C B.∠APB=∠ABCC. D.12.如图,等腰与等腰是以点为位似中心的位似图形,位似比为,则点的坐标是()A. B. C. D.二、填空题(每题4分,共24分)13.如图,,,则的度数是__________.14.在单词(数学)中任意选择-一个字母,选中字母“”的概率为______.15.如图,在菱形ABCD中,∠B=60º,E是CD上一点,将△ADE折叠,折痕为AE,点D的对应点为点D’,AD’与BC交于点F,若F为BC中点,则∠AED=______.16.已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于(x1,0),且﹣1<x1<0,对称轴x=1.如图所示,有下列5个结论:①abc>0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(m≠1的实数).其中所有结论正确的是______(填写番号).17.如图,点B是双曲线y=(k≠0)上的一点,点A在x轴上,且AB=2,OB⊥AB,若∠BAO=60°,则k=_____.18.半径为的圆中,弦、的长分别为2和,则的度数为_____.三、解答题(共78分)19.(8分)如图:在平面直角坐标系中,点.(1)尺规作图:求作过三点的圆;(2)设过三点的圆的圆心为M,利用网格,求点M的坐标;(3)若直线与相交,直接写出的取值范围.20.(8分)如图,抛物线与轴交于,两点.(1)求该抛物线的解析式;(2)若抛物线交轴于点,在该抛物线的对称轴上是否存在点,使得的周长最小?若存在,求出点的坐标;若不存在,请说明理由21.(8分)某单位800名职工积极参加向贫困地区学校捐书活动,为了解职工的捐书数量,采用随机抽样的方法抽取30名职工的捐书数量作为样本,对他们的捐书数量进行统计,统计结果共有4本、5本、6本、7本、8本五类,分别用A、B、C、D、E表示,根据统计数据绘制成了如图所示的不完整的条形统计图,由图中给出的信息解答下列问题:(1)补全条形统计图;(2)求这30名职工捐书本数的平均数,写出众数和中位数;(3)估计该单位800名职工共捐书多少本?22.(10分)如图,AG是∠PAQ的平分线,点E在AQ上,以AE为直径的⊙0交AG于点D,过点D作AP的垂线,垂足为点C,交AQ于点B.(1)求证:直线BC是⊙O的切线;(2)若⊙O的半径为6,AC=2CD,求BD的长23.(10分)解一元二次方程:.24.(10分)如图1,已知中,,,,点、在上,点在外,边、与交于点、,交的延长线于点.(1)求证:;(2)当时,求的长;(3)设,的面积为,①求关于的函数关系式.②如图2,连接、,若的面积是的面积的1.5倍时,求的值.25.(12分)我们把端点都在格点上的线段叫做格点线段.如图,在7×7的方格纸中,有一格点线段AB,按要求画图.(1)在图1中画一条格点线段CD将AB平分.(2)在图2中画一条格点线段EF.将AB分为1:1.26.如图1,在Rt△ABC中,∠B=90°,BC=2AB=8,点D,E分别是边BC,AC的中点,连接DE,将△EDC绕点C按顺时针方向旋转,记旋转角为α.(1)问题发现①当时,;②当时,(2)拓展探究试判断:当0°≤α<360°时,的大小有无变化?请仅就图2的情况给出证明.(3)问题解决当△EDC旋转至A、D、E三点共线时,直接写出线段BD的长.
参考答案一、选择题(每题4分,共48分)1、B【分析】抛物线的开口方向由抛物线的解析式y=ax2+bx+c(a≠0)的二次项系数a的符号决定,据此进行判断即可.【详解】解:∵y=2x2的二次项系数a=2>0,
∴抛物线y=2x2的开口方向是向上;
故选:B.【点睛】本题考查了二次函数图象的开口方向.二次函数y=ax2+bx+c(a≠0)的图象的开口方向:当a<0时,开口方向向下;当a>0时,开口方向向上.2、A【分析】根据DE∥OA证得∠AOD=50°即可得到答案.【详解】解:∵DE∥OA,∠D=50°,∴∠AOD=∠D=50°,∴∠C=∠AOD=25°.故选:A.【点睛】此题考查平行线的性质,同弧所对的圆周角与圆心角的关系,利用平行线证得∠AOD=50°是解题的关键.3、A【分析】由题意直接根据平行线分线段成比例定理进行分析即可求解.【详解】解:∵a//b//c,∴=.故选:A.【点睛】本题考查平行线分线段成比例定理.注意掌握三条平行线截两条直线,所得的对应线段成比例.4、A【分析】由∠BAC的平分线AD与∠ACB的平分线CE交于点O,得出点O是△ABC的内心即可.【详解】解:∵△ABC中,∠BAC的平分线AD与∠ACB的平分线CE交于点O,∴点O是△ABC的内切圆的圆心;故选:A.【点睛】本题主要考察三角形的内切圆与内心,解题关键是熟练掌握三角形的内切圆性质.5、B【分析】将A、B、C的横坐标代入双曲线,求出对应的横坐标,比较即可.【详解】由题意知:A(﹣2,y1)、B(1,y2)、C(2,y3)在双曲线上,将代入双曲线中,得∴.故选B.【点睛】本题主要考查了双曲线函数的性质,正确掌握双曲线函数的性质是解题的关键.6、D【解析】根据∆>0且k-1≥0列式求解即可.【详解】由题意得()2-4×1×(-1)>0且k-1≥0,解之得k≥1.故选D.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式∆=b2﹣4ac与根的关系,熟练掌握根的判别式与根的关系式解答本题的关键.当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆<0时,一元二次方程没有实数根.7、C【解析】分析:作对的圆周角∠APC,如图,利用圆内接四边形的性质得到∠P=40°,然后根据圆周角定理求∠AOC的度数.详解:作对的圆周角∠APC,如图,∵∠P=∠AOC=×140°=70°∵∠P+∠B=180°,∴∠B=180°﹣70°=110°,故选:C.点睛:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.8、B【分析】解法一:将变形为,代入数据即可得出答案.解法二:设,,带入式子约分即可得出答案.【详解】解法一:解法二:设,则故选B.【点睛】本题考查比例的性质,将比例式变形,或者设比例参数是解题的关键.9、D【分析】将点的横坐标代入,求得,将,代入求得,然后将与联立求得点的坐标,然后根据函数图象化简绝对值,最后根据函数的性质,可得函数的增减性以及的范围.【详解】将代入,得,点的坐标为.将,代入,得,.将与联立,解得:,或,.点的坐标为.∴当x<-1时,,∴m=(|y1-y1|+y1+y1)=(y1-y1+y1+y1)=y1,故错误;当时,,.当时,.当时,,.∴当x<1时,m随x的增大而减小,故错误;令,代入,求得:或(舍去),令,代入,求得:,∴当m=1时,x=0或,故错误.∵m=,画出图像如图,∴.∴D正确.故选.【点睛】本题主要考查的是二次函数与一次函数的综合,根据函数图象比较出与的大小关系,从而得到关于x的函数关系式,是解题的关键.10、A【解析】试题分析:根据“平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),即关于原点的对称点,横纵坐标都变成相反数”解答.根据关于原点对称的点的坐标的特点,∴点P(﹣2,3)关于原点过对称的点的坐标是(2,﹣3).故选A.考点:关于原点对称的点的坐标.11、D【解析】试题分析:A.当∠ABP=∠C时,又∵∠A=∠A,∴△ABP∽△ACB,故此选项错误;B.当∠APB=∠ABC时,又∵∠A=∠A,∴△ABP∽△ACB,故此选项错误;C.当时,又∵∠A=∠A,∴△ABP∽△ACB,故此选项错误;D.无法得到△ABP∽△ACB,故此选项正确.故选D.考点:相似三角形的判定.12、A【分析】根据位似比为,可得,从而得:CE=DE=12,进而求得OC=6,即可求解.【详解】∵等腰与等腰是以点为位似中心的位似图形,位似比为,∴,即:DE=3BC=12,∴CE=DE=12,∴,解得:OC=6,∴OE=6+12=18,∴点的坐标是:.故选A.【点睛】本题主要考查位似图形的性质,掌握位似图形的位似比等于相似比,是解题的关键.二、填空题(每题4分,共24分)13、【分析】根据三角形外角定理求解即可.【详解】∵,且∴故填:.【点睛】本题主要考查三角形外角定理,熟练掌握定理是关键.14、【分析】由题意可知总共有11个字母,求出字母的个数,利用概率公式进行求解即可.【详解】解:共有个字母,其中有个,所以选中字母“”的概率为.故答案为:.【点睛】本题考查概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.15、75º【分析】如图(见解析),连接AC,易证是等边三角形,从而可得,又由可得,再根据折叠的性质得,最后在中利用三角形的内角和定理即可得.【详解】如图,连接AC在菱形ABCD中,是等边三角形F为BC中点(等腰三角形三线合一的性质),即(两直线平行,同旁内角互补)又由折叠的性质得:在中,由三角形的内角和定理得:故答案为:.【点睛】本题是一道较好的综合题,考查了菱形的性质、等边三角形的性质、平行线的性质、图形折叠的性质、三角形的内角和定理,利用三线合一的性质证出是解题关键.16、③④⑤【解析】根据函数图象和二次函数的性质可以判断题目中各个小题的结论是否成立,从而可以解答本题.【详解】解:由图象可得,抛物线开口向下,则a<0,抛物线与y轴交于正半轴,则c>0,对称轴在y轴右侧,则与a的符号相反,故b>0.
∴a<0,b>0,c>0,
∴abc<0,故①错误,
当x=-1时,y=a-b+c<0,得b>a+c,故②错误,
∵二次函数y=ax2+bx+c(a≠0)的图象与x轴交于(x1,0),且-1<x1<0,对称轴x=1,
∴x=2时的函数值与x=0的函数值相等,
∴x=2时,y=4a+2b+c>0,故③正确,
∵x=-1时,y=a-b+c<0,-=1,
∴2a-2b+2c<0,b=-2a,
∴-b-2b+2c<0,
∴2c<3b,故④正确,
由图象可知,x=1时,y取得最大值,此时y=a+b+c,
∴a+b+c>am2+bm+c(m≠1),
∴a+b>am2+bm
∴a+b>m(am+b),故⑤正确,
故答案为:③④⑤.【点睛】本题考查二次函数图象与系数的关系、抛物线与x轴的交点坐标,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.17、3【分析】利用60°余弦值可求得OB的长,作AD⊥OB于点D,利用60°的正弦值可求得AD长,利用60°余弦值可求得BD长,OB-BD即为点A的横坐标,那么k等于点A的横纵坐标的积.【详解】解:∵AB=2,0A⊥OB,∠ABO=60°,∴OA=AB÷cos60°=4,作AD⊥OB于点D,∴BD=AB×sin60°=,AD=AB×cos60°=1,∴OD=OA﹣AD=3,∴点B的坐标为(3,),∵B是双曲线y=上一点,∴k=xy=3.故答案为:3.【点睛】本题考查了解直角三角形,反比例函数图像上点的坐标特征,解决本题的关键是利用相应的特殊的三角函数值得到点B的坐标;反比例函数的比例系数等于在它上面的点的横纵坐标的积.18、或【分析】根据题意利用垂径定理及特殊三角函数进行分析求解即可.【详解】解:分别作OD⊥AB,OE⊥AC,垂足分别是D、E.∵OE⊥AC,OD⊥AB,弦、的长分别为1和,直径为,∴AO=,∴∴,即有,同理∴∠BAC=45°+30°=75°,或∠BAC′=45°-30°=15°.∴∠BAC=15°或75°.故答案为:或.【点睛】本题考查圆的垂径定理及解直角三角形的相关性质,解答此题时要进行分类讨论,不要漏解,避免失分.三、解答题(共78分)19、(1)见解析;(2)M(1,3);(3)【分析】(1)作OA和OB的垂直平分线,交点即为圆心,据此作圆即可;(2)AB的中点即为圆心M,由此可解;(3)求出半径,即可知直线与相切时a的值,由此可得相交时的取值范围.【详解】解:(1)如图即为所要求作的过三点的圆;作OA和OB的垂直平分线,交点即为圆心,作圆即可.(2)由图可知,∠AOB=,所以AB是所求作圆的直径,因为AB中点的坐标为(1,3),即所求圆心M的坐标是(1,3).(3)由圆心M和圆上任意点可求出半径r=AM=BM=,∴当a=1-或1+时,直线与相切,∴当时,直线与相交.【点睛】本题考查了网格作图,圆的有关性质,直线与圆的位置关系,掌握切线时的有关计算是解题的关键.20、(1);(2)存在,当的周长最小时,点的坐标为.【分析】(1)直接利用待定系数求出二次函数解析式即可;
(2)首先求出直线BC的解析式,再利用轴对称求最短路线的方法得出答案.【详解】(1)抛物线与轴交于两点解得:该抛物线的解析式为(2)该抛物线的对称轴上存在点,使得的周长最小.如解图所示,作点关于抛物线对称轴的对称点,连接,交对称轴于点,连接,点关于抛物线对称轴的对称点,且,交对称轴于点,的周长为,为抛物线对称轴上一点,的周长,当点处在解图位置时,的周长最小.在中,当时,,,,抛物线的对称轴为直线,点是点关于抛物线对称轴直线的对称点,且.设过点两点的直线的解析式为:,在直线上,,解得:,直线的解析式为:,抛物线对称轴为直线,且直线与抛物线对称轴交于点,在中,当时,,,在该抛物线的对称轴上存在点,使得的周长最小,当的周长最小时,点的坐标为【点睛】此题主要考查了二次函数综合应用以及待定系数法求一次函数、二次函数解析式等知识,能正确理解题意是解题关键.21、(1)补全图形见解析;(2)平均数是6本,众数是6本,中位数是6本.(3)该单位800名职工共捐书有4800本.【分析】(1)根据总数和统计数据求解即可;(2)根据平均数,众数和中位数定义公式求解即可;(3)根据已知平均数乘以员工总数求解即可.【详解】解:(1)D组人数=30﹣4﹣6﹣9﹣3=8人,补图如下:.(2)平均数是:=6(本),众数是6本,中位数是6本.(3)∵平均数是6本,∴该单位800名职工共捐书有6×800=4800本.【点睛】本题主要考查了数据统计中的平均数,众数和中位数的问题,熟练掌握其定义与计算公式是解答关键.22、(1)证明见详解;(2)8.【分析】(1)根据角平分线的定义和同圆的半径相等可得OD∥AC,证明OD⊥CB,可得结论;(2))在Rt△ACD中,设CD=a,则AC=2a,AD=,证明△ACD∽△ADE,表示a=,由平行线分线段成比例定理得:,代入可得结论.【详解】(1)证明:连接OD,∵AG是∠HAF的平分线,∴∠CAD=∠BAD,∵OA=OD,∴∠OAD=∠ODA,∴∠CAD=∠ODA,∴OD∥AC,∵∠ACD=90°,∴∠ODB=∠ACD=90°,即OD⊥CB,∵D在⊙O上,∴直线BC是⊙O的切线;(2)解:在Rt△ACD中,设CD=a,则AC=2a,AD=,连接DE,∵AE是⊙O的直径,∴∠ADE=90°,由∠CAD=∠BAD,∠ACD=∠ADE=90°,∴△ACD∽△ADE,∴,即,∴,由(1)知:OD∥AC,解得BD=【点睛】本题考查切线的判定、勾股定理、相似三角形的判定与性质,根据相似三角形的性质列方程解决问题是关键.23、,.【分析】根据因式分解法即可求解.【详解】解:∴x-1=0或2x-1=0解得,.【点睛】此题主要考查一元二次方程的求解,解题的关键是熟知因式分解法的应用.24、(1)证明见解析;(2);(3)①,②.【分析】(1)由圆内接四边形性质得,又,从而可证明;(2)过作于,证明,得,在直角中求出BH的值即可得到结论;(3)①同(2)可得,根据三角形面积公式求解即可;②过作于,则,用含x的代数式表示出的面积,列出方程求解即可.【详解】(1)∵,∴(2)过作于,∵∴∴∴∴∵在直角中,∴∴(3)①由(2)得AH=1,当时,∴②过作于,则,∵,∴,∴,∴,∴∵∴∴解得,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 安全检查服务合同范本
- 冀少版八年级生物上册第三单元第三节无机盐与植物的生长课件
- 学前教育进入“有专门法可依”新阶段
- 部编本二年级上册语文第四至七单元(内容含课文口语交际及语文园地)全部教案
- 七年级下册古诗文预习《爱莲说》-2022-2023学年七年级语文古诗文寒假复习预习课
- 消防安全群防群治实施细则
- 人教版新课标小学数学四年级下册教案
- 医疗行业专业劳务派遣方案
- 石油勘探设备校正操作规程
- 电力工程投标诚信承诺书模板
- XX小学学生心理健康档案(一生一案)
- 地质勘探中的安全生产考核试卷
- 创新实践(理论)学习通超星期末考试答案章节答案2024年
- 2024世界精神卫生日共建共治共享同心健心安心宣传课件
- 二十届三中全会知识点试题及答案【200题】
- 大模型应用开发极简入门基于GPT-4和ChatGPT
- 四年级教材《劳动》课件
- 2023《中华人民共和国合同法》
- (通桥【2018】8370)《铁路桥梁快速更换型伸缩缝安装图》
- 超星尔雅学习通《当代大学生国家安全教育》章节测试答案
- 小学一年级上册 综合实践教学课件
评论
0/150
提交评论