北京市门头沟区2025届九年级数学第一学期期末联考试题含解析_第1页
北京市门头沟区2025届九年级数学第一学期期末联考试题含解析_第2页
北京市门头沟区2025届九年级数学第一学期期末联考试题含解析_第3页
北京市门头沟区2025届九年级数学第一学期期末联考试题含解析_第4页
北京市门头沟区2025届九年级数学第一学期期末联考试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

北京市门头沟区2025届九年级数学第一学期期末联考试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.如图,OA、OB是⊙O的半径,C是⊙O上一点.若∠OAC=16°,∠OBC=54°,则∠AOB的大小是()A.70° B.72° C.74° D.76°2.如图,在平面直角坐标系中,点在抛物线上运动,过点作轴于点,以为对角线作矩形,连结,则对角线的最小值为()A. B. C. D.3.在平面直角坐标系中,点P(m,1)与点Q(﹣2,n)关于原点对称,则mn的值是()A.﹣2 B.﹣1 C.0 D.24.用配方法解方程,经过配方,得到()A. B. C. D.5.下列图形中,是轴对称图形但不是中心对称图形的是()A. B.C. D.6.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:①abc>0;②b<a+c;③4a+2b+c>0;④2c–3b<0;⑤a+b>n(an+b)(n≠1),其中正确的结论有()A.2个 B.3个 C.4个 D.5个7.一个布袋里装有2个红球,3个黑球,4个白球,它们除颜色外都相同,从中任意摸出1个球,则下事件中,发生的可能性最大的是()A.摸出的是白球 B.摸出的是黑球C.摸出的是红球 D.摸出的是绿球8.如图,在中,,则的值为()A. B. C. D.9.下列运算中,计算结果正确的是()A.a4•a=a4 B.a6÷a3=a2 C.(a3)2=a6 D.(ab)3=a3b10.一元二次方程的解是()A. B. C., D.,11.电影《我和我的祖国》讲述了普通人与国家之间息息相关的动人故事.一上映就获得全国人民的追捧,第一天票房约3亿元,以后每天票房按相同的增长率增长,三天后累计票房收入达10亿元,若把平均每天票房的增长率记作x,则可以列方程为()A. B.C. D.12.下列各点在抛物线上的是()A. B. C. D.二、填空题(每题4分,共24分)13.如图,物理老师为同学们演示单摆运动,单摆左右摆动中,在的位置时俯角,在的位置时俯角.若,点比点高.则从点摆动到点经过的路径长为________.14.某车间生产的零件不合格的概率为.如果每天从他们生产的零件中任取10个做试验,那么在大量的重复试验中,平均来说,天会查出1个次品.15.如图是由一些完全相同的小正方体组成的几何体的主视图、俯视图和左视图,则组成这个几何体的小正方体的个数是___________个.16.点A(-2,y1),B(-1,y2)都在反比例函数y=-图象上,则y1_____________y2(选填“﹤”,“>”或”=”)17.《道德经》中的“道生一,一生二,二生三,三生万物”道出了自然数的特征.在数的学习过程中,我们会对其中一些具有某种特性的数进行研究,如学习自然数时,我们研究了奇数、偶数、质数、合数等.现在我们来研究另一种特珠的自然数——“纯数”.定义:对于自然数n,在计算n+(n+1)+(n+2)时,各数位都不产生进位,则称这个自然数n为“纯数”,例如:32是“纯数”,因为计算32+33+34时,各数位都不产生进位;23不是“纯数”,因为计算23+24+25时,个位产生了进位.那么,小于100的自然数中,“纯数”的个数为___________个.18.如图,AB是⊙O的直径,AB=6,点C在⊙O上,∠CAB=30°,D为的中点,P是直径AB上一动点,则PC+PD的最小值为_____.三、解答题(共78分)19.(8分)计算:2cos45°﹣tan60°+sin30°﹣tan45°20.(8分)如图,将半径为2cm的圆形纸片折叠后,圆弧恰好经过圆心O,求折痕AB的长.21.(8分)如图,已知在矩形ABCD中,AB=6,BC=8,点P从点C出发以每秒1个单位长度的速度沿着CD在C点到D点间运动(当达D点后则停止运动),同时点Q从点D出发以每秒2个单位长度的速度沿着DA在D点到A点间运动(当达到A点后则停止运动).设运动时间为t秒,则按下列要求解决有关的时间t.(1)△PQD的面积为5时,求出相应的时间t;(2)△PQD与△ABC可否相似,如能相似求出相应的时间t,如不能说明理由;(3)△PQD的面积可否为10,说明理由.22.(10分)如图,在中,,,.点从点出发,沿向终点运动,同时点从点出发,沿射线运动,它们的速度均为每秒5个单位长度,点到达终点时,、同时停止运动,当点不与点、重合时,过点作于点,连接,以、为邻边作.设与重叠部分图形的面积为,点的运动时间为.(1)①的长为______;②的长用含的代数式表示为______;(2)当为矩形时,求的值;(3)当与重叠部分图形为四边形时,求与之间的函数关系式.23.(10分)如图,已知抛物线y1=﹣x2+x+2与x轴交于A、B两点,与y轴交于点C,直线l是抛物线的对称轴,一次函数y2=kx+b经过B、C两点,连接AC.(1)△ABC是三角形;(2)设点P是直线l上的一个动点,当△PAC的周长最小时,求点P的坐标;(3)结合图象,写出满足y1>y2时,x的取值范围.24.(10分)如图,等腰中,,点是边上一点,在上取点,使(1)求证:;(2)若,求的长.25.(12分)已知正方形ABCD中,E为对角线BD上一点,过点E作EF⊥BD交BC于点F,连接DF,G为DF的中点,连接EG,(1)如图1,求证:EG=CG;(2)将图1中的ΔBEF绕点B逆时针旋转45°,如图2,取DF的中点G,连接EG,CG.问((3)将图1中的ΔBEF绕点B逆时计旋转任意角度,如图3,取DF的中点G,连接EG,CG.问(26.如图所示,一辆单车放在水平的地面上,车把头下方处与坐垫下方处在平行于地面的同一水平线上,,之间的距离约为,现测得,与的夹角分别为与,若点到地面的距离为,坐垫中轴处与点的距离为,求点到地面的距离(结果保留一位小数).(参考数据:,,)

参考答案一、选择题(每题4分,共48分)1、D【解析】连接OC,根据等腰三角形的性质得到∠OAC=∠OCA=16°;∠OBC=∠OCB=54°求出∠ACB的度数,然后根据同圆中同弧所对的圆周角等于圆心角的一半求解.【详解】解:连接OC∵OA=OC,OB=OC∴∠OAC=∠OCA=16°;∠OBC=∠OCB=54°∴∠ACB=∠OCB-∠OCA=54°-16°=38°∴∠AOB=2∠ACB=76°故选:D【点睛】本题考查的是等腰三角形的性质及同圆或等圆中,同弧或等弧所对的圆周角等于圆心角的一半,掌握相关性质定理是本题的解题关键.2、B【分析】根据矩形的性质可知,要求BD的最小值就是求AC的最小值,而AC的长度对应的是A点的纵坐标,然后利用二次函数的性质找到A点纵坐标的最小值即可.【详解】∵四边形ABCD是矩形∴∴顶点坐标为∵点在抛物线上运动∴点A纵坐标的最小值为2∴AC的最小值是2∴BD的最小值也是2故选:B.【点睛】本题主要考查矩形的性质及二次函数的最值,掌握矩形的性质和二次函数的图象和性质是解题的关键.3、A【分析】已知在平面直角坐标系中,点P(m,1)与点Q(﹣2,n)关于原点对称,则P和Q两点横坐标互为相反数,纵坐标互为相反数即可求得m,n,进而求得mn的值.【详解】∵点P(m,1)与点Q(﹣2,n)关于原点对称∴m=2,n=-1∴mn=-2故选:A【点睛】本题考查了直角坐标系中,关于原点对称的两个点的坐标特点,它们的横坐标互为相反数,纵坐标互为相反数.4、D【分析】通过配方法的步骤计算即可;【详解】,,,,故答案选D.【点睛】本题主要考查了一元二次方程的配方法应用,准确计算是解题的关键.5、D【解析】根据轴对称图形与中心对称图形的概念,对各选项分析判断即可得解.【详解】A、是轴对称图形,也是中心对称图形,故本选项错误;B、是轴对称图形,也是中心对称图形,故本选项错误;C、是轴对称图形,也是中心对称图形,故本选项错误;D、是轴对称图形,但不是中心对称图形,故本选项正确.故选:D.【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.6、B【分析】①观察图象可知a<0,b>0,c>0,由此即可判定①;②当x=﹣1时,y=a﹣b+c由此可判定②;③由对称知,当x=2时,函数值大于0,即y=4a+2b+c>0,由此可判定③;④当x=3时函数值小于0,即y=9a+3b+c<0,且x=﹣=1,可得a=﹣,代入y=9a+3b+c<0即可判定④;⑤当x=1时,y的值最大.此时,y=a+b+c,当x=n时,y=an2+bn+c,由此即可判定⑤.【详解】①由图象可知:a<0,b>0,c>0,abc<0,故此选项错误;②当x=﹣1时,y=a﹣b+c<0,即b>a+c,故此选项错误;③由对称知,当x=2时,函数值大于0,即y=4a+2b+c>0,故此选项正确;④当x=3时函数值小于0,y=9a+3b+c<0,且x=﹣=1即a=﹣,代入得9(﹣)+3b+c<0,得2c<3b,故此选项正确;⑤当x=1时,y的值最大.此时,y=a+b+c,而当x=n时,y=an2+bn+c,所以a+b+c>an2+bn+c,故a+b>an2+bn,即a+b>n(an+b),故此选项正确.∴③④⑤正确.故选B.【点睛】本题主要考查了抛物线的图象与二次函数系数之间的关系,熟知抛物线的图象与二次函数系数之间的关系是解决本题的关键.7、A【分析】个数最多的就是可能性最大的.【详解】解:因为白球最多,所以被摸到的可能性最大.故选A.【点睛】本题主要考查可能性大小的比较:只要总情况数目相同,谁包含的情况数目多,谁的可能性就大;反之也成立;若包含的情况相当,那么它们的可能性就相等.8、D【解析】过点A作,垂足为D,在中可求出AD,CD的长,在中,利用勾股定理可求出AB的长,再利用正弦的定义可求出的值.【详解】解:过点A作,垂足为D,如图所示.在中,,;在中,,,.故选:D.【点睛】考查了解直角三角形以及勾股定理,通过解直角三角形及勾股定理,求出AD,AB的长是解题的关键.9、C【分析】根据幂的运算法则即可判断.【详解】A、a4•a=a5,故此选项错误;B、a6÷a3=a3,故此选项错误;C、(a3)2=a6,正确;D、(ab)3=a3b3,故此选项错误;故选C.【点睛】此题主要考查幂的运算,解题的关键是熟知幂的运算公式.10、C【解析】用因式分解法解一元二次方程即可.【详解】∴或∴,故选C.【点睛】本题主要考查一元二次方程的解,掌握解一元二次方程的方法是解题的关键.11、D【分析】根据题意分别用含x式子表示第二天,第三天的票房数,将三天的票房相加得到票房总收入,即可得出答案.【详解】解:设增长率为x,由题意可得出,第二天的票房为3(1+x),第三天的票房为3(1+x)2,根据题意可列方程为.故选:D.【点睛】本题考查的知识点是由实际问题抽象出一元二次方程,解题的关键是读懂题意,找出等量关系式.12、A【分析】确定点是否在抛物线上,分别把x=0,3,-2,代入中计算出对应的函数值,再进行判断即可.【详解】解:当时,,当时,,当时,,当时,,所以点在抛物线上.故选:.二、填空题(每题4分,共24分)13、【分析】如图,过点A作AP⊥OC于点P,过点B作BQ⊥OC于点Q,由题意可得∠AOP=60°,∠BOQ=30°,进而得∠AOB=90°,设OA=OB=x,分别在Rt△AOP和Rt△BOQ中,利用解直角三角形的知识用含x的代数式表示出OP和OQ,从而可得关于x的方程,解方程即可求出x,然后再利用弧长公式求解即可.【详解】解:如图,过点A作AP⊥OC于点P,过点B作BQ⊥OC于点Q,∵∠EOA=30°,∠FOB=60°,且OC⊥EF,∴∠AOP=60°,∠BOQ=30°,∴∠AOB=90°,设OA=OB=x,则在Rt△AOP中,OP=OAcos∠AOP=x,在Rt△BOQ中,OQ=OBcos∠BOQ=x,由PQ=OQ﹣OP可得:x﹣x=7,解得:x=7+7cm,则从点A摆动到点B经过的路径长为cm,故答案为:.【点睛】本题考查了解直角三角形的应用和弧长公式的计算,属于常考题型,正确理解题意、熟练掌握解直角三角形的知识是解题的关键.14、1.【解析】试题分析:根据题意首先得出抽取10个零件需要1天,进而得出答案.解:∵某车间生产的零件不合格的概率为,每天从他们生产的零件中任取10个做试验,∴抽取10个零件需要1天,则1天会查出1个次品.故答案为1.考点:概率的意义.15、【分析】根据几何体的三视图分析即可得出答案.【详解】通过主视图和左视图可知几何体有两层,由俯视图可知最底层有3个小正方体,结合主视图和左视图知第2层有1个小正方体,所以共4个小正方体.故答案为4【点睛】本题主要考查根据三视图判断组成几何体的小正方体的个数,掌握三视图的知识是解题的关键.16、<【分析】根据反比例函数的增减性和比例系数的关系即可判断.【详解】解:∵﹣3<0∴反比例函数y=-在每一象限内,y随x的增大而增大∵-2<-1<0∴y1<y2故答案为:<.【点睛】此题考查的是反比例函数的增减性,掌握反比例函数的增减性与比例系数的关系是解决此题的关键.17、1【分析】根据题意,连续的三个自然数各位数字是0,1,2,其他位的数字为0,1,2,3时不会产生进位,然后根据这个数是几位数进行分类讨论,找到所有合适的数.【详解】解:当这个数是一位自然数时,只能是0,1,2,一共3个,当这个数是两位自然数时,十位数字是1,2,3,个位数是0,1,2,一共9个,∴小于100的自然数中,“纯数”共有1个.故答案是:1.【点睛】本题考查归纳总结,解题的关键是根据题意理解“纯数”的定义,总结方法找出所有小于100的“纯数”.18、3【分析】作出D关于AB的对称点D',则PC+PD的最小值就是CD'的长度.在△COD'中根据边角关系即可求解.【详解】作出D关于AB的对称点D',连接OC,OD',CD'.又∵点C在⊙O上,∠CAB=30°,D为的中点,∴∠BAD'∠CAB=15°,∴∠CAD'=45°,∴∠COD'=90°.∴△COD'是等腰直角三角形.∵OC=OD'AB=3,∴CD'=3.故答案为:3.【点睛】本题考查了圆周角定理以及路程的和最小的问题,正确作出辅助线是解答本题的关键.三、解答题(共78分)19、-【分析】将各特殊角的三角函数值代入即可得出答案.【详解】解:原式=2×﹣+﹣×1=-【点睛】此题考查特殊角的三角函数值,属于基础题,熟练记忆一些特殊角的三角函数值是关键.20、AB=2cm【分析】在图中构建直角三角形,先根据勾股定理得AD的长,再根据垂径定理得AB的长.【详解】解:如图:作OD⊥AB于D,连接OA.根据题意得:OD=OA=1cm,再根据勾股定理得:AD===cm,由垂径定理得:AB=2cm.【点睛】本题考查了垂径定理,根据题意构造垂径、应用勾股定理是解答本题的关键.21、(1)t=1;(2)t=2.4或;(3)△PQD的面积不能为1,理由见解析.【分析】(1)△PQD的两直角边分别用含t的代数式表示,由△PQD的面积为5得到关于t的方程,由此可解得t的值;(2)设△PQD与相似△ABC,由图形形状考虑可知有两种可能性,对两种可能性分别给予讨论可以求得答案;(3)与(1)类似,可以用含t的表达式表示△PQD的面积,令其等于1,由所得方程解的情况可以作出判断.【详解】因为四边形ABCD是矩形,所以AB=CD=6,BC=AD=8,(1)S△PQD=解得:t1=1t2=5(舍去)(2)①当时△PDQ~△ABC即得t=2.4②当时△PQD̰~△CBA即得;(3)△PQD的面积为1时,,此方程无实数根,即△PQD的面积不能为1.【点睛】本题综合考查三角形相似、面积计算与动点几何问题,利用方程的思想方法解题是关键所在.22、(1)①3;②3t;(2);(3)当0<t≤时,S=-3t2+48t;当<t<3,S=t2−14t+1.【分析】(1)①根据勾股定理即可直接计算AB的长;②根据三角函数即可计算出PN;

(2)当▱PQMN为矩形时,由PN⊥AB可知PQ∥AB,根据平行线分线段成比例定理可得,即可计算出t的值.

(3)当▱PQMN与△ABC重叠部分图形为四边形时,有两种情况,Ⅰ.▱PQMN在三角形内部时,Ⅱ.▱PQMN有部分在外边时.由三角函数可计算各图形中的高从而计算面积.【详解】解:(1)在Rt△ABC中,∠C=90°,AC=20,BC=2.

∴AB==3.

∴sin∠CAB=,

由题可知AP=5t,

∴PN=AP•sin∠CAB=5t•=3t.

故答案为:①3;②3t.

(2)当▱PQMN为矩形时,∠NPQ=90°,

∵PN⊥AB,

∴PQ∥AB,

∴,

由题意可知AP=CQ=5t,CP=20-5t,

∴,

解得t=,

即当▱PQMN为矩形时t=.

(3)当▱PQMN△ABC重叠部分图形为四边形时,有两种情况,

Ⅰ.如解图(3)1所示.▱PQMN在三角形内部时.延长QM交AB于G点,

由(1)题可知:cosA=sinB=,cosB=,AP=5t,BQ=2-5t,PN=QM=3t.

∴AN=AP•cosA=4t,BG=BQ•cosB=9-3t,QG=BQ•sinB=12-4t,

∵.▱PQMN在三角形内部时.有0<QM≤QG,

∴0<3t≤12-4t,

∴0<t≤.

∴NG=3-4t-(9-3t)=16-t.

∴当0<t≤时,▱PQMN与△ABC重叠部分图形为▱PQMN,S与t之间的函数关系式为S=PN•NG=3t•(16-t)=-3t2+48t.

Ⅱ.如解图(3)2所示.当0<QG<QM,▱PQMN与△ABC重叠部分图形为梯形PQGN时,

即:0<12-4t<3t,解得:<t<3,

▱PQMN与△ABC重叠部分图形为梯形PQGN的面积S=NG(PN+QG)=(16−t)(3t+12−4t)=t2−14t+1.

综上所述:当0<t≤时,S=-3t2+48t.当<t<3,S=t2−14t+1.【点睛】本题考查了平行四边形的性质、勾股定理、矩形的性质、锐角三角函数等知识,关键是根据题意画出图形,分情况进行讨论,避免出现漏解.23、(1)直角;(2)P(,);(3)0<x<1.【分析】(1)求出点A、B、C的坐标分别为:(-1,0)、(1,0)、(0,2),则AB2=25,AC2=5,BC2=20,即可求解;(2)点A关于函数对称轴的对称点为点B,则直线BC与对称轴的交点即为点P,即可求解;(3)由图象可得:y1>y2时,x的取值范围为:0<x<1.【详解】解:(1)当x=0时,y1=0+0+2=2,当y=0时,﹣x2+x+2=0,解得x1=-1,x2=1,∴点A、B、C的坐标分别为:(﹣1,0)、(1,0)、(0,2),则AB2=25,AC2=5,BC2=20,故AB2=AC2+BC2,故答案为:直角;(2)将点B、C的坐标代入一次函数表达式:y=kx+b得:,解得,∴直线BC的表达式为:y=﹣x+2,抛物线的对称轴为直线:x=,点A关于函数对称轴的对称点为点B,则直线BC与对称轴的交点即为点P,当x=时,y=×+2=,故点P(,);(3)由图象可得:y1>y2时,x的取值范围为:0<x<1,故答案为:0<x<1.【点睛】本题考查了二次函数与坐标轴的交点,待定系数法求一次函数解析式,轴对称最短的性质,勾股定理及其逆定理,以及利用图像解不等式等知识,本题难度不大.24、(1)见解析;(2).【分析】(1)利用三角形外角定理证得∠EDC=∠DAB,再根据两角相等即可证明△ABD∽△DCE;(2)作高AF,利用三角函数求得,继而求得,再根据△ABD∽△DCE,利用对应边成比例即可求得答案.【详解】(1)∵△ABC是等腰三角形,且∠BAC=120°,

∴∠ABD=∠ACB=30°,

∴∠ABD=∠ADE=30°,

∵∠ADC=∠ADE+∠EDC=∠ABD+∠DAB,

∴∠EDC=∠DAB,

∴△ABD∽△DCE;(2)过作于,∵△ABC是等腰三角形,且∠BAC=120°,,∴∠ABD=∠ACB=30°,,则,,,,,,所以.【点睛】本题是相似形的综合题,考查了三角形相似的性质和判定、等腰三角形的性质、解直角三角形,证得△ABD∽△DCE是解题的关键.25、(1)见解析;(2)见解析;(3)见解析.【解析】(1)利用直角三角形斜边上的中线等于斜边的一半,可证出CG=EG.

(2)结论仍然成立,连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点;再证明△DAG≌△DCG,得出AG=CG;再证出△DMG≌△FNG,得到MG=NG;再证明△AMG≌△ENG,得出AG=EG;最后证出CG=EG.

(3)结论依然成立.过F作CD的平行线并延长CG交于M点,连接EM、EC,过F作FN垂直于AB于N.由于G为FD中点,易证△CDG≌△MFG,得到CD=FM,又因为BE=EF,易证∠EFM=∠EBC,则△EFM≌△EBC,∠FEM=∠BEC,EM=EC,得出△MEC是等腰直角三角形,就可以得出结论.【详解】(1)在RtΔFCD中,G为DF∴CG=1同理,在RtΔDEF中,EG=∴EG=CG.(2)如图②,(1)中结论仍然成立,即EG=CG.

理由:连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点.

∴∠AMG=∠DMG=90°.

∵四边形ABCD是正方形,

∴AD=CD=BC=AB,∠ADG=∠CDG.∠DAB=∠ABC=∠BCD=∠ADC=90°.

在△DAG和△DCG中,

AD=CD∠ADG=∠CDGDG=DG,

∴△DAG≌△DCG(SAS),

∴AG=CG.

∵G为DF的中点,

∴GD=GF.

∵EF⊥BE,

∴∠BEF=90°,

∴∠BEF=∠BAD,

∴AD∥EF,

∴∠N=∠DMG=90°.∠DGM=∠FGNFG=DG∠MDG=∠NFG,

∴△DMG

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论