版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届河北省石家庄市同文中学九年级数学第一学期期末综合测试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.在Rt△ABC中,∠C=90°,BC=4,AC=3,CD⊥AB于D,设∠ACD=α,则cosα的值为()A. B. C. D.2.如图,是的直径,弦于点,如果,,那么线段的长为()A.6 B.8 C.10 D.123.如图,A,B,C,D是⊙O上的四个点,B是的中点,M是半径OD上任意一点.若∠BDC=40°,则∠AMB的度数不可能是()A.45° B.60° C.75° D.85°4.如图,在中,两个顶点在轴的上方,点的坐标是.以点为位似中心,在轴的下方作的位似,图形,使得的边长是的边长的2倍.设点的横坐标是-3,则点的横坐标是()A.2 B.3 C.4 D.55.方程的两根之和是()A. B. C. D.6.学生作业本每页大约为7.5忽米(1厘米=1000忽米),请用科学计数法将7.5忽米记为米,则正确的记法为()A.7.5×105米 B.0.75×106米 C.0.75×10-4米 D.7.当温度不变时,气球内气体的气压P(单位:kPa)是气体体积V(单位:m3)的函数,下表记录了一组实验数据:P与V的函数关系式可能是()V(单位:m3)11.522.53P(单位:kPa)96644838.432A.P=96V B.P=﹣16V+112C.P=16V2﹣96V+176 D.P=8.事件①:射击运动员射击一次,命中靶心;事件②:购买一张彩票,没中奖,则()A.事件①是必然事件,事件②是随机事件 B.事件①是随机事件,事件②是必然事件C.事件①和②都是随机事件 D.事件①和②都是必然事件9.如图,在平面直角坐标系中,已知⊙D经过原点O,与x轴、y轴分别交于A、B两点,B点坐标为(0,2),OC与⊙D相交于点C,∠OCA=30°,则图中阴影部分的面积为()A.2π﹣2 B.4π﹣ C.4π﹣2 D.2π﹣10.如图,在正方形ABCD中,H是对角线BD的中点,延长DC至E,使得DE=DB,连接BE,作DF⊥BE交BC于点G,交BE于点F,连接CH、FH,下列结论:(1)HC=HF;(2)DG=2EF;(3)BE·DF=2CD2;(4)S△BDE=4S△DFH;(5)HF∥DE,正确的个数是()A.5 B.4 C.3 D.2二、填空题(每小题3分,共24分)11.如图,△ABC中,AB=6,BC=1.如果动点D以每秒2个单位长度的速度,从点B出发沿边BA向点A运动,此时直线DE∥BC,交AC于点E.记x秒时DE的长度为y,写出y关于x的函数解析式_____(不用写自变量取值范围).12.小刚要测量一旗杆的高度,他发现旗杆的影子恰好落在一栋楼上,如图,此时测得地面上的影长为8米,楼面上的影长为2米.同一时刻,一根长为1米、垂直于地面放置的标杆在地面上的影长为2米,则旗杆的高度为_______米.13.若,则__________.14.小北同学掷两面质地均匀硬币,抛5次,4次正面朝上,则掷硬币出现正面概率为_____.15.把方程2x2﹣1=x(x+3)化成一般形式是_________.16.西周时期,丞相周公旦设置过一种通过测定日影长度来确定时间的仪器,称为圭表.如图是一个根据北京的地理位置设计的圭表,其中,立柱高为.已知,冬至时北京的正午日光入射角约为,则立柱根部与圭表的冬至线的距离(即的长)为______.17.如图,是的中线,点是线段上的一点,且,交于点.若,则_________.18.将抛物线y=﹣x2向右平移1个单位,再向上平移2个单位后,得到的抛物线的解析式为______.三、解答题(共66分)19.(10分)如图所示,某学校有一边长为20米的正方形区域(四周阴影是四个全等的矩形,记为区域甲;中心区是正方形,记为区域乙).区域甲建设成休闲区,区域乙建成展示区,已知甲、乙两个区域的建设费用如下表:区域甲乙价格(百元米2)65设矩形的较短边的长为米,正方形区域建设总费用为百元.(1)的长为米(用含的代数式表示);(2)求关于的函数解析式;(3)当中心区的边长要求不低于8米且不超过12米时,预备建设资金220000元够用吗?请利用函数的增减性来说明理由.20.(6分)如图,已知二次函数的图象经过,两点.(1)求这个二次函数的解析式;(2)设该二次函数的对称轴与轴交于点,连接,,求的面积.21.(6分)如图,中,,将绕点顺时针旋转得到,使得点的对应点落在边上(点不与点重合),连接.(1)依题意补全图形;(2)求证:四边形是平行四边形.22.(8分)如图,CD为⊙O的直径,弦AB交CD于点E,连接BD、OB.(1)求证:△AEC∽△DEB;(2)若CD⊥AB,AB=6,DE=1,求⊙O的半径长.23.(8分)如图,在△ABC中,BC=12,tanA=,∠B=30°,求AC的长和△ABC的面积.24.(8分)已知:点D是△ABC中AC的中点,AE∥BC,ED交AB于点G,交BC的延长线于点F.(1)求证:△GAE∽△GBF;(2)求证:AE=CF;(3)若BG:GA=3:1,BC=8,求AE的长.25.(10分)已知:如图,在△ABC中,AD是∠BAC的平分线,∠ADE=∠B.求证:(1)△ABD∽△ADE;(2)AD2=AE•AB.26.(10分)如图,在社会实践活动中,某数学兴趣小组想测量在楼房CD顶上广告牌DE的高度,他们先在点A处测得广告牌顶端E的仰角为60°,底端D的仰角为30°,然后沿AC方向前行20m,到达B点,在B处测得D的仰角为45°(C,D,E三点在同一直线上).请你根据他们的测量数据计算这广告牌DE的高度(结果保留小数点后一位,参考数据:,).
参考答案一、选择题(每小题3分,共30分)1、A【解析】根据勾股定理求出AB的长,在求出∠ACD的等角∠B,即可得到答案.【详解】如图,在Rt△ABC中,∠C=90°,BC=4,AC=3,∴,∵CD⊥AB,∴∠ADC=∠C=90°,∴∠A+∠ACD=∠A+∠B,∴∠B=∠ACD=α,∴.故选:A.【点睛】此题考查解直角三角形,求一个角的三角函数值有时可以求等角的对应函数值.2、A【分析】连接OD,由直径AB与弦CD垂直,根据垂径定理得到E为CD的中点,由CD的长求出DE的长,又由直径的长求出半径OD的长,在直角三角形ODE中,由DE及OD的长,利用勾股定理即可求出OE的长.【详解】解:如图所示,连接OD.
∵弦CD⊥AB,AB为圆O的直径,
∴E为CD的中点,
又∵CD=16,
∴CE=DE=CD=8,
又∵OD=AB=10,
∵CD⊥AB,∴∠OED=90°,
在Rt△ODE中,DE=8,OD=10,
根据勾股定理得:OE==6,
则OE的长度为6,
故选:A.【点睛】本题主要考查了垂径定理,勾股定理,解答此类题常常利用垂径定理由垂直得中点,进而由弦长的一半,弦心距及圆的半径构造直角三角形,利用勾股定理是解答此题的关键.3、D【解析】解:∵B是弧AC的中点,∴∠AOB=2∠BDC=80°.又∵M是OD上一点,∴∠AMB≤∠AOB=80°.则不符合条件的只有85°.故选D.点睛:本题考查了圆周角定理,正确理解圆周角定理求得∠AOB的度数是关键.4、B【解析】设点B′的横坐标为x,然后根据△A′B′C与△ABC的位似比为2列式计算即可求解.【详解】设点B′的横坐标为x,∵△ABC的边长放大到原来的2倍得到△A′B′C,点C的坐标是(-1,0),∴x-(-1)=2[(-1)-(-1)],即x+1=2(-1+1),解得x=1,所以点B的对应点B′的横坐标是1.故选B.【点睛】本题考查了位似变换,坐标与图形的性质,根据位似比列出方程是解题的关键.5、C【分析】利用两个根和的关系式解答即可.【详解】两个根的和=,故选:C.【点睛】此题考查一元二次方程根与系数的关系式,.6、D【分析】小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:7.5忽米用科学记数法表示7.5×10-5米.
故选D.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.7、D【解析】试题解析:观察发现:故P与V的函数关系式为故选D.点睛:观察表格发现从而确定两个变量之间的关系即可.8、C【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】解:射击运动员射击一次,命中靶心是随机事件;购买一张彩票,没中奖是随机事件,故选C.【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.9、A【分析】从图中明确S阴=S半-S△,然后依公式计算即可.【详解】∵∠AOB=90°,∴AB是直径,连接AB,根据同弧对的圆周角相等得∠OBA=∠C=30°,由题意知OB=2,∴OA=OBtan∠ABO=OBtan30°=2,AB=AO÷sin30°=4即圆的半径为2,∴阴影部分的面积等于半圆的面积减去△ABO的面积,故选A.【点睛】辅助线问题是初中数学的难点,能否根据题意准确作出适当的辅助线很能反映一个学生的对图形的理解能力,因而是中考的热点,尤其在压轴题中比较常见,需特别注意.10、B【解析】由等腰三角形“三线合一”的性质可得EF=BF,根据H是正方形对角线BD的中点可得CH=DH=BH,即可证明HF是△BDE的中位线,可得HF=DE,HF//DE;由BD=DE即可得HC=HF;利用直角三角形两锐角互余的关系可得∠CBE=∠CDG,利用ASA可证明△BCE≌△DCG,可得DG=BE,可判定DG=2EF,由正方形的性质可得BD2=2CD2,根据∠CBE=∠CDG,∠E是公共角可证明△BCE∽△DFE,即可得,即BE·DF=DE·BC,可对③进行判定,根据等底等高的三角形面积相等可对④进行判定,综上即可得答案.【详解】∵BD=DE,DF⊥BE,∴EF=BF,∵H是正方形ABCD对角线BD的中点,∴CH=DH=BH=BD,∴HF是△BDE的中位线,∴HF=DE=BD=CH,HF//DE,故①⑤正确,∵∠CBE+∠E=90°,∠FDE+∠E=90°,∴∠CBE=∠FDE,又∵CD=BC,∠DCG=∠BCE=90°,∴△BCE≌△DCG,∴DG=BE,∵BE=2EF,∴DG=2EF,故②正确,∵∠CBE=∠FDE,∠E=∠E,∴△BCE∽△DFE,∴,即BE·DF=DE·BC,∵BD2=CD2+BC2=2CD2∴DE2=2CD2,∴DE·BC≠2CD2,∴BE·DF≠2CD2,故③错误,∵DH=BD,∴S△DFH=S△DFB,∵BF=BE,∴S△DFB=S△BDE,∴S△DFH=S△BDE,即S△BDE=4S△DFH,故④正确,综上所述:正确的结论有①②④⑤,共4个,故选B.【点睛】本题考查正方形的性质、等腰三角形的性质、全等三角形的判定与性质、相似三角形的判定与性质及三角形中位线的性质,综合性较强,熟练掌握所学性质及定理是解题关键.二、填空题(每小题3分,共24分)11、y=﹣3x+1【分析】由DE∥BC可得出△ADE∽△ABC,再利用相似三角形的性质,可得出y关于x的函数解析式.【详解】∵DE∥BC,∴△ADE∽△ABC,∴,即,∴y=﹣3x+1.故答案为:y=﹣3x+1.【点睛】本题考查根据实际问题列函数关系式,利用相似三角形的性质得出是关键.12、1【分析】直接利用已知构造三角形,利用同一时刻,实际物体与影长成比例进而得出答案.【详解】如图所示:由题意可得,DE=2米,BE=CD=8米,∵同一时刻,一根长为1米、垂直于地面放置的标杆在地面上的影长为2米,∴,解得:AB=4,故旗杆的高度AC为1米.故答案为:1.【点睛】此题主要考查了相似三角形的应用,正确构造三角形是解题关键.13、【分析】根据等式的基本性质,将等式的两边同时除以,即可得出结论.【详解】解:将等式的两边同时除以,得故答案为:.【点睛】此题考查的是将等式变形,掌握等式的基本性质是解决此题的关键.14、【分析】根据抛掷一枚硬币,要么正面朝上,要么反面朝上,可以求得相应的概率.【详解】无论哪一次掷硬币,都有两种可能,即正面朝上与反面朝上,则掷硬币出现正面概率为:;故答案为:.【点睛】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.15、x2﹣3x﹣1=1【解析】2x2﹣1=x(x+3),2x2﹣1=x2+3x,则2x2﹣x2﹣3x﹣1=1,故x2﹣3x﹣1=1,故答案为x2﹣3x﹣1=1.16、【分析】直接根据正切的定义求解即可.【详解】在Rt△ABC中,约为,高为,∵tan∠ABC=,∴BC=m.故答案为:.【点睛】本题考查了解直角三角形的应用,解决此问题的关键在于正确理解题意得基础上建立数学模型,把实际问题转化为数学问题.17、【分析】过点A作AG∥BC交CF的延长线于G,根据平行即可证出△AGE∽△DCE,△AGF∽△BCF,列出比例式,根据已知条件即可求出AB.【详解】解:过点A作AG∥BC交CF的延长线于G,如下图所示∴△AGE∽△DCE,△AGF∽△BCF∴,∵∴∴∵是的中线,∴∴∴解得:cm∴AB=AF+BF=1cm故答案为:1.【点睛】此题考查的是相似三角形的判定及性质,掌握构造相似三角形的方法是解决此题的关键.18、y=﹣(x﹣1)1+1【分析】根据二次函数图象的平移规律:左加右减,上加下减,可得答案.【详解】将抛物线y=﹣x1向右平移1个单位,再向上平移1个单位后,得到的抛物线的解析式为y=﹣(x﹣1)1+1.故答案是:y=﹣(x﹣1)1+1.【点睛】本题考查了二次函数图象与几何变换,利用函数图象的平移规律:左加右减,上加下减是解题关键.三、解答题(共66分)19、(1);(2)y=;(3)预备建设资金220000元不够用,见解析【分析】(1)根据矩形和正方形的性质解答即可;
(2)利用矩形的面积公式和正方形的面积公式解答即可;
(3)利用二次函数的性质和最值解答即可.【详解】解:(1)设矩形的较短边的长为米,,根据图形特点.(2)由题意知:化简得:(百元)(3)由题知:,解得,当x=4时,,当x=6时,,将函数解析式变形:,当时,y随x的增加而减少,所以(百元),而,预备建设资金220000元不够用.【点睛】此题主要考查了二次函数的应用以及配方法求最值和正方形的性质等知识,正确得出各部分的边长是解题关键.20、见解析【分析】(1)二次函数图象经过A(2,0)、B(0,-6)两点,两点代入y=-x2+bx+c,算出b和c,即可得解析式;(2)先求出对称轴方程,写出C点的坐标,计算出AC,然后由面积公式计算值.【详解】(1)把,代入得,解得.∴这个二次函数解析式为.(2)∵抛物线对称轴为直线,∴的坐标为,∴,∴.【点睛】本题是二次函数的综合题,要会求二次函数的对称轴,会运用面积公式.21、(1)详见解析;(2)详见解析.【分析】(1)根据旋转的性质作图;(2)由旋转的性质可得,然后根据全等三角形的性质得出,,从而使问题得证.【详解】解:(1)如图:(2)证明:∵绕点顺时针旋转得到,∴,,.∵,∴.∵,∴.∵,∴,∵,∴,∴,∴,又∵,∴四边形是平行四边形.【点睛】本题考查旋转的性质,全等的判定和性质,平行四边形的判定,比较基础,掌握判定定理及其性质正确推理论证是本题的解题关键.22、(1)见解析;(2)⊙O的半径为1.【分析】(1)根据圆周角定理即可得出∠A=∠D,∠C=∠ABD,从而可求证△AEC∽△DEB;
(2)由垂径定理可知BE=3,设半径为r,由勾股定理可列出方程求出r.【详解】解:(1)根据“同弧所对的圆周角相等”,
得∠A=∠D,∠C=∠ABD,
∴△AEC∽△DEB
(2)∵CD⊥AB,O为圆心,
∴BE=AB=3,
设⊙O的半径为r,
∵DE=1,则OE=r−1,
在Rt△OEB中,
由勾股定理得:OE2+EB2=OB2,
即:(r−1)2+32=r2,
解得r=1,即⊙O的半径为1.【点睛】本题考查圆的综合问题,涉及相似三角形的判定与性质,勾股定理,垂径定理等知识,综合程度较高,需要灵活运用所学知识.23、10,24+18【分析】作CD⊥AB于D,根据直角三角形的性质求出CD,根据余弦的定义求出BD,根据正切的定义求出AD,根据勾股
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 会博通 文件档案知识一体化管理的引领者(单用户版)
- 广东省佛山市普通高中高三教学质量检测(一)语文试题(含答案)
- 专题06《最动听的声音》《把奋斗写进明天》《成功的钥匙》《青年之担当》
- 购书买卖合同
- 产品代销合同范本
- 幼儿园重阳节主题活动策划方案五篇
- 包装材料购销合同范本
- 2024年世界旅游产业发展投资合同
- 海参海鲜采购合同
- 西安二手车买卖合同
- 电力沟施工组织设计-电缆沟
- 《法律援助》课件
- 《高处作业安全》课件
- 锅炉本体安装单位工程验收表格
- 一种基于STM32的智能门锁系统的设计-毕业论文
- 妊娠合并强直性脊柱炎的护理查房
- 2024年山东铁投集团招聘笔试参考题库含答案解析
- 儿童10岁生日-百日宴-满月酒生日会成长相册展示(共二篇)
- 《绘本阅读与指导》课程教学大纲
- 员工离职登记表(范本模板)
- 2023人教版(PEP)小学英语(三、四、五、六年级)词汇及常用表达法(课本同步)
评论
0/150
提交评论