版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届浙江省杭州市周浦中学数学九上期末学业质量监测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.如图,已知在△ABC中,P为AB上一点,连接CP,以下条件中不能判定△ACP∽△ABC的是()A. B. C. D.2.如图,△ABC内接于⊙O,OD⊥AB于D,OE⊥AC于E,连结DE.且DE=,则弦BC的长为()A. B.2 C.3 D.3.一个物体如图所示,它的俯视图是()A. B. C. D.4.如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为PQ,则△PQD的面积为()A. B. C. D.5.如图,在锐角△ABC中,∠A=60°,∠ACB=45°,以BC为弦作⊙O,交AC于点D,OD与BC交于点E,若AB与⊙O相切,则下列结论:①∠BOD=90°;②DO∥AB;③CD=AD;④△BDE∽△BCD;⑤正确的有()A.①② B.①④⑤ C.①②④⑤ D.①②③④⑤6.已知菱形的周长为40cm,两对角线长度比为3:4,则对角线长分别为()A.12cm.16cm B.6cm,8cm C.3cm,4cm D.24cm,32cm7.下列标志既是轴对称图形又是中心对称图形的是().A. B.C. D.8.如图,反比例函数在第二象限的图象上有两点A、B,它们的横坐标分别为-1,-3.直线AB与x轴交于点C,则△AOC的面积为()A.8 B.10 C.12 D.249.(2011•陕西)下面四个几何体中,同一个几何体的主视图和俯视图相同的共有()A、1个 B、2个C、3个 D、4个10.“一般的,如果二次函数y=ax2+bx+c的图象与x轴有两个公共点,那么一元二次方程ax2+bx+c=0有两个不相等的实数根.——苏科版《数学》九年级(下册)P21”参考上述教材中的话,判断方程x2﹣2x=﹣2实数根的情况是()A.有三个实数根 B.有两个实数根 C.有一个实数根 D.无实数根二、填空题(每小题3分,共24分)11.如果不等式组的解集是x<a﹣4,则a的取值范围是_______.12.如图,与中,,,,,AD的长为________.13.已知二次函数,与的部分对应值如下表所示:…-101234……61-2-3-2m…下面有四个论断:①抛物线的顶点为;②;③关于的方程的解为;④.其中,正确的有___________________.14.若,则锐角α=_____.15.如图,在平面直角坐标系中,是由绕着某点旋转得到的,则这点的坐标是_______.16.已知函数的图象如图所示,若矩形的面积为,则__________.17.已知关于x的方程x2+3x+a=0有一个根为﹣2,则另一个根为_____.18.如图,直线a//b//c,点B是线段AC的中点,若DE=2,则DF的长度为_________.三、解答题(共66分)19.(10分)如图,直线与双曲线在第一象限内交于两点,已知.求的值及直线的解析式;根据函数图象,直接写出不等式的解集.20.(6分)在平面直角坐标系xOy中,二次函数y=-x2+(m-1)x+4m的图象与x轴负半轴交于点A,与y轴交于点B(0,4),已知点E(0,1).(1)求m的值及点A的坐标;(2)如图,将△AEO沿x轴向右平移得到△A′E′O′,连结A′B、BE′.①当点E′落在该二次函数的图象上时,求AA′的长;②设AA′=n,其中0<n<2,试用含n的式子表示A′B2+BE′2,并求出使A′B2+BE′2取得最小值时点E′的坐标;③当A′B+BE′取得最小值时,求点E′的坐标.21.(6分)如图,抛物线y=ax2+bx+4与x轴的两个交点分别为A(-4,0)、B(2,0),与y轴交于点C,顶点为D.E(1,2)为线段BC的中点,BC的垂直平分线与x轴、y轴分别交于F、G.(1)求抛物线的函数解析式,并写出顶点D的坐标;(2)在直线EF上求一点H,使△CDH的周长最小,并求出最小周长;(3)若点K在x轴上方的抛物线上运动,当K运动到什么位置时,△EFK的面积最大?并求出最大面积.22.(8分)如图,小明欲利用测角仪测量树的高度.已知他离树的水平距离BC为10m,测角仪的高度CD为1.5m,测得树顶A的仰角为33°.求树的高度AB.(参考数据:sin33°≈0.54,cos33°≈0.84,tan33°≈0.65)23.(8分)粤东农批﹒2019球王故里五华马拉松赛于12月1日在广东五华举行,组委会为了做好运动员的保障工作,沿途设置了4个补给站,分别是:A(粤东农批)、B(奥体中心)、C(球王故里)和D(滨江中路),志愿者小明和小红都计划各自在这4个补给站中任意选择一个进行补给服务,每个补给站被选择的可能性相同.(1)小明选择补给站C(球王故里)的概率是多少?(2)用树状图或列表的方法,求小明和小红恰好选择同一个补给站的概率.24.(8分)在Rt△ABC中,∠C=90°,a=6,b=.解这个三角形.25.(10分)端午节是我国的传统节日,人们素有吃粽子的习俗.某商场在端午节来临之际用4800元购进A、B两种粽子共1100个,购买A种粽子与购买B种粽子的费用相同.已知A种粽子的单价是B种粽子单价的1.2倍.(1)求A,B两种粽子的单价;(2)若计划用不超过8000元的资金再次购进A,B两种粽子共1800个,已知A、B两种粽子的进价不变.求A种粽子最多能购进多少个?26.(10分)如图,在中,,点在边上,点在边上,且是的直径,的平分线与相交于点.(1)证明:直线是的切线;(2)连接,若,,求边的长.
参考答案一、选择题(每小题3分,共30分)1、C【分析】A、加一公共角,根据两角对应相等的两个三角形相似可以得结论;B、加一公共角,根据两角对应相等的两个三角形相似可以得结论;C、其夹角不相等,所以不能判定相似;D、其夹角是公共角,根据两边的比相等,且夹角相等,两三角形相似.【详解】A、∵∠A=∠A,∠ACP=∠B,∴△ACP∽△ABC,所以此选项的条件可以判定△ACP∽△ABC;B、∵∠A=∠A,∠APC=∠ACB,∴△ACP∽△ABC,所以此选项的条件可以判定△ACP∽△ABC;C、∵,当∠ACP=∠B时,△ACP∽△ABC,所以此选项的条件不能判定△ACP∽△ABC;D、∵,又∠A=∠A,∴△ACP∽△ABC,所以此选项的条件可以判定△ACP∽△ABC,本题选择不能判定△ACP∽△ABC的条件,故选C.【点睛】本题考查了相似三角形的判定,熟练掌握相似三角形的判定方法是关键.2、C【分析】由垂径定理可得AD=BD,AE=CE,由三角形中位线定理可求解.【详解】解:∵OD⊥AB,OE⊥AC,∴AD=BD,AE=CE,∴BC=2DE=2×=3故选:C.【点睛】本题考查了三角形的外接圆与外心,三角形的中位线定理,垂径定理等知识,灵活运用这些性质进行推理是本题的关键.3、D【解析】从图形的上方观察即可求解.【详解】俯视图从图形上方观察即可得到,故选D.【点睛】本题考查几何体的三视图;熟练掌握组合体图形的观察方法是解题的关键.4、D【分析】由折叠的性质可得AQ=QD,AP=PD,由勾股定理可求AQ的长,由锐角三角函数分别求出AP,HQ的长,即可求解.【详解】解:过点D作DN⊥AC于N,∵点D是BC中点,∴BD=3,∵将△ABC折叠,∴AQ=QD,AP=PD,∵AB=9,BC=6,∠B=90°,∴AC=,∵sin∠C==,∴DN=,∵cos∠C=,∴CN=,∴AN=,∵PD2=PN2+DN2,∴AP2=(﹣AP)2+,∴AP=,∵QD2=DB2+QB2,∴AQ2=(9﹣AQ)2+9,∴AQ=5,∵sin∠A==,∴HQ==∵∴△PQD的面积=△APQ的面积=××=,故选:D.【点睛】本题考查了翻折变换,勾股定理,三角形面积公式,锐角三角函数,求出HQ的长是本题的关键.5、C【解析】根据同弧所对的圆周角等于它所对圆心角的一半,由圆周角∠ACB=45°得到圆心角∠BOD=90°,进而得到的度数为90°,故选项①正确;又因OD=OB,所以△BOD为等腰直角三角形,由∠A和∠ACB的度数,利用三角形的内角和定理求出∠ABC=180°-60°-45°=75°,由AB与圆切线,根据切线的性质得到∠OBA为直角,求出∠CBO=∠OBA-∠ABC=90°-75°=15°,由根据∠BOE为直角,求出∠OEB=180°-∠BOD-∠OBE=180°-90°-15°=75°,根据内错角相等,得到OD∥AB,故选项②正确;由D不一定为AC中点,即CD不一定等于AD,而选项③不一定成立;又由△OBD为等腰三角形,故∠ODB=45°,又∠ACB=45°,等量代换得到两个角相等,又∠CBD为公共角,根据两对对应角相等的两三角形相似得到△BDE∽△BCD,故④正确;连接OC,由相似三角形性质和平行线的性质,得比例,由BD=OD,等量代换即可得到BE等=DE,故选项⑤正确.综上,正确的结论有4个.
故选C.点睛:此题考查了相似三角形的判定与性质,圆周角定理,切线的性质,等腰直角三角形的性质以及等边三角形的性质,熟练掌握性质与定理是解本题的关键.6、A【解析】试题分析:如图,四边形ABCD是菱形,且菱形的周长为40cm,设故选A.考点:1、菱形的性质;2、勾股定理.7、B【分析】根据轴对称图形与中心对称图形的定义解答.【详解】解:A、是轴对称图形,不是中心对称图形;B、是轴对称图形,也是中心对称图形;C、是中心对称图形,不是轴对称图形;D、是轴对称图形,不是中心对称图形.故选:B.【点睛】掌握中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.8、C【解析】试题分析:x=-1时,y=6,x=-3时,y=2,所以点A(-1,6),点B(-3,2),应用待定系数法求得直线AB的解析式为y=2x+8,直线AB与x轴的交点C(-4,0),所以OC=4,点A到x轴的距离为6,所以△AOC的面积为=1.故选C.考点:待定系数法求一次函数解析式;坐标与图形.9、B【解析】圆柱主视图、俯视图分别是长方形、圆,主视图与俯视图不相同;圆锥主视图、俯视图分别是三角形、有圆心的圆,主视图与俯视图不相同;球主视图、俯视图都是圆,主视图与俯视图相同;正方体主视图、俯视图都是正方形,主视图与俯视图相同.共2个同一个几何体的主视图与俯视图相同.故选B.10、C【解析】试题分析:由得,,即是判断函数与函数的图象的交点情况.因为函数与函数的图象只有一个交点所以方程只有一个实数根故选C.考点:函数的图象点评:函数的图象问题是初中数学的重点和难点,是中考常见题,在压轴题中比较常见,要特别注意.二、填空题(每小题3分,共24分)11、a≥﹣3.【分析】根据口诀“同小取小”可知不等式组的解集,解这个不等式即可.【详解】解这个不等式组为x<a﹣4,则3a+2≥a﹣4,解这个不等式得a≥﹣3故答案a≥﹣3.【点睛】此题考查解一元一次不等式组,掌握运算法则是解题关键12、【分析】先证明△ABC∽△ADB,然后根据相似三角形的判定与性质列式求解即可.【详解】∵,,∴△ABC∽△ADB,∴,∵,,∴,∴AD=.故答案为:.【点睛】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.灵活运用相似三角形的性质进行几何计算.13、①③.【解析】根据图表求出函数对称轴,再根据图表信息和二次函数性质逐一判断即可.【详解】由二次函数y=ax2+bx+c(a≠0),y与x的部分对应值可知:该函数图象是开口向上的抛物线,对称轴是直线x=2,顶点坐标为(2,-3);与x轴有两个交点,一个在0与1之间,另一个在3与4之间;当y=-2时,x=1或x=3;由抛物线的对称性可知,m=1;①抛物线y=ax2+bx+c(a≠0)的顶点为(2,-3),结论正确;②b2﹣4ac=0,结论错误,应该是b2﹣4ac>0;③关于x的方程ax2+bx+c=﹣2的解为x1=1,x2=3,结论正确;④m=﹣3,结论错误,其中,正确的有.①③故答案为:①③【点睛】本题考查了二次函数的图像,结合图表信息是解题的关键.14、45°【分析】首先求得cosα的值,即可求得锐角α的度数.【详解】解:∵,∴cosα=,∴α=45°.故答案是:45°.【点睛】本题考查了特殊的三角函数值,属于简单题,熟悉三角函数的概念是解题关键.15、(0,1)【解析】利用旋转的性质,旋转中心在各对应点的连线段的垂直平分线上,则作线段AD、BE、FC的垂直平分线,它们相交于点P(0,1)即为旋转中心.【详解】解:作线段AD、BE、FC的垂直平分线,它们相交于点P(0,1),如图,
所以△DEF是由△ABC绕着点P逆时针旋转90°得到的.故答案为(0,1).【点睛】本题考查坐标与图形变化-旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.解决本题的关键是利用旋转的性质确定旋转中心.16、-6【分析】根据题意设AC=a,AB=b解析式为y=A点的横坐标为-a,纵坐标为b,因为AB*AC=6,k=xy=-AB*AC=-6【详解】解:由题意得设AC=a,AB=b解析式为y=∴AB*AC=ab=6A(-a,b)b=∴k=-ab=-6【点睛】此题主要考查了反比例函数与几何图形的结合,注意A点的横坐标的符号.17、-1【解析】试题分析:对于一元二次方程的两个根和,根据韦达定理可得:+=,即,解得:,即方程的另一个根为-1.18、1【分析】根据平行线分线段成比例的性质可得,从而计算出EF的值,即可得到DF的值.【详解】解:∵直线a∥b∥c,点B是线段AC的中点,DE=2,
∴,即,
∴=,
∴EF=2,∵DE=2∴DF=DE+EF=2+2=1
故答案为:1.【点睛】本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例.三、解答题(共66分)19、(1),;(2)或.【分析】⑴将点A(1,m)B(2,1)代入y2得出k2,m;再将A,B坐标代入y1中,求出即可;⑵直接根据函数图像写出答案即可.【详解】解:点在双曲线上,双曲线的解析式为在双曲线上,,直线过两点,,解得,直线的解析式为.根据函数图象可知,不等式的解集为或.【点睛】此题主要考查了一次函数与反比例函数交点问题,已知一个交点坐标先求出反比例函数的解析式是解题的关键.20、(2)m="2,A(-2,0);"(2)①,②点E′的坐标是(2,2),③点E′的坐标是(,2).【分析】试题分析:(2)将点代入解析式即可求出m的值,这样写出函数解析式,求出A点坐标;(2)①将E点的坐标代入二次函数解析式,即可求出AA′;②连接EE′,构造直角三角形,利用勾股定理即可求出A′B2+BE′2当n=2时,其最小时,即可求出E′的坐标;③过点A作AB′⊥x轴,并使AB′="BE"=2.易证△AB′A′≌△EBE′,当点B,A′,B′在同一条直线上时,A′B+B′A′最小,即此时A′B+BE′取得最小值.易证△AB′A′∽△OBA′,由相似就可求出E′的坐标试题解析:解:(2)由题意可知4m=4,m=2.∴二次函数的解析式为.∴点A的坐标为(-2,0).(2)①∵点E(0,2),由题意可知,.解得.∴AA′=.②如图,连接EE′.由题设知AA′=n(0<n<2),则A′O=2-n.在Rt△A′BO中,由A′B2=A′O2+BO2,得A′B2=(2–n)2+42=n2-4n+3.∵△A′E′O′是△AEO沿x轴向右平移得到的,∴EE′∥AA′,且EE′=AA′.∴∠BEE′=90°,EE′=n.又BE=OB-OE=2.∴在Rt△BE′E中,BE′2=E′E2+BE2=n2+9,∴A′B2+BE′2=2n2-4n+29=2(n–2)2+4.当n=2时,A′B2+BE′2可以取得最小值,此时点E′的坐标是(2,2).③如图,过点A作AB′⊥x轴,并使AB′=BE=2.易证△AB′A′≌△EBE′,∴B′A′=BE′,∴A′B+BE′=A′B+B′A′.当点B,A′,B′在同一条直线上时,A′B+B′A′最小,即此时A′B+BE′取得最小值.易证△AB′A′∽△OBA′,∴,∴AA′=∴EE′=AA′=,∴点E′的坐标是(,2).考点:2.二次函数综合题;2.平移.【详解】21、(1)顶点D的坐标为(-1,)(2)H(,)(2)K(-,)【分析】(1)将A、B的坐标代入抛物线的解析式中,即可求出待定系数的值,进而可用配方法求出其顶点D的坐标;
(2)根据抛物线的解析式可求出C点的坐标,由于CD是定长,若△CDH的周长最小,那么CH+DH的值最小,由于EF垂直平分线段BC,那么B、C关于直线EF对称,所以BD与EF的交点即为所求的H点;易求得直线BC的解析式,关键是求出直线EF的解析式;由于E是BC的中点,根据B、C的坐标即可求出E点的坐标;可证△CEG∽△COB,根据相似三角形所得的比例线段即可求出CG、OG的长,由此可求出G点坐标,进而可用待定系数法求出直线EF的解析式,由此得解;
(2)过K作x轴的垂线,交直线EF于N;设出K点的横坐标,根据抛物线和直线EF的解析式,即可表示出K、N的纵坐标,也就能得到KN的长,以KN为底,F、E横坐标差的绝对值为高,可求出△KEF的面积,由此可得到关于△KEF的面积与K点横坐标的函数关系式,根据所得函数的性质即可求出其面积的最大值及对应的K点坐标.【详解】(1)由题意,得解得,b=-1.所以抛物线的解析式为,顶点D的坐标为(-1,).(2)设抛物线的对称轴与x轴交于点M.因为EF垂直平分BC,即C关于直线EG的对称点为B,连结BD交于EF于一点,则这一点为所求点H,使DH+CH最小,即最小为DH+CH=DH+HB=BD=.而.∴△CDH的周长最小值为CD+DR+CH=.设直线BD的解析式为y=k1x+b,则解得,b1=2.所以直线BD的解析式为y=x+2.由于BC=2,CE=BC∕2=,Rt△CEG∽△COB,得CE:CO=CG:CB,所以CG=2.3,GO=1.3.G(0,1.3).同理可求得直线EF的解析式为y=x+.联立直线BD与EF的方程,解得使△CDH的周长最小的点H(,).(2)设K(t,),xF<t<xE.过K作x轴的垂线交EF于N.则KN=yK-yN=-(t+)=.所以S△EFK=S△KFN+S△KNE=KN(t+2)+KN(1-t)=2KN=-t2-2t+3=-(t+)2+.即当t=-时,△EFK的面积最大,最大面积为,此时K(-,).【点睛】本题是二次函数的综合类试题,考查了二次函数解析式的确定、轴对称的性质、相似三角形的判定和性质、三角形面积的求法、二次函数的应用等知识,难度较大.22、8米【详解】解:如图,过点D作DE⊥AB,垂足为E.在Rt△ADE中,DE=BC=10,∠ADE=33°,tan∠ADE=,∴AE=DE·tan∠ADE≈10×0.65=6.5,∴AB=AE+BE=AE+CD=6.5+1.5=8(m).答:树的高度AB约为8m.23、(1);(2)【分析】(1)共有4个补给站,所以小明选择补给站C(球王故里)的概率是;(2)用树状图或列表表示出所有的情况数,从中找出小明和小红恰好选择同一个补给站的情况数,利用概率公式求解即可.【详解】解:(1)在这4个补给站中任意选择一个补给站服务,每个补给站被选择的可能性相同,∴小明选择补给站C(球王故里)的概率是;(2)画树状图分析如下:共有16种等可能的结果,小明和小红恰好选择同一个补给站的结果有4种,∴小明和小红恰好选择同一个补给站的概率为=.【点睛】本题主要考查树状图或列表法求随机事件的概率,掌握概率公式是解题的关键.24、c=12,∠A=30°,∠B=60°.【分析】先用勾股定理求出c,再根据边的比得到角的度数.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度物流服务合同的物流服务及货物配送
- 2024年度二手摩托车仓储合同协议
- 《鼠标产品检测》课件
- 2024年度工地门窗安装工程合同中的工程进度款支付条款
- 2024年度第一版计算机软件开发与许可合同
- 《交车流程操作要点》课件
- 2024年度股权投资合同:某投资公司与某创业企业间的股权投资协议2篇
- 2024年度版权质押合同的版权信息与质押条件3篇
- 2024年度网络设备租赁合同(服务器)
- 2024年度艺人演出设备租赁合同
- 《尼采善恶之彼岸》课件
- 矿井建设过程安全管理指南
- 小学教育课件教案动物的进化历程:从古生物到现代物种的进化过程
- 石墨聚苯板与普通EPS对比分析
- 信访工作课件
- 医疗设备维修工程师年度总结报告
- 劳动模范评选管理工作制度
- 物联网政策和法规
- 2022年GOLD慢阻肺诊治指南
- 上海版六年级英语期末试卷(附听力材料和答案)
- 大学生毕业论文写作教程全套教学课件
评论
0/150
提交评论