高考数学一轮复习(提升版)(新高考地区专用)10.3平面向量的应用(精练)(提升版)(原卷版+解析)_第1页
高考数学一轮复习(提升版)(新高考地区专用)10.3平面向量的应用(精练)(提升版)(原卷版+解析)_第2页
高考数学一轮复习(提升版)(新高考地区专用)10.3平面向量的应用(精练)(提升版)(原卷版+解析)_第3页
高考数学一轮复习(提升版)(新高考地区专用)10.3平面向量的应用(精练)(提升版)(原卷版+解析)_第4页
高考数学一轮复习(提升版)(新高考地区专用)10.3平面向量的应用(精练)(提升版)(原卷版+解析)_第5页
已阅读5页,还剩26页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

10.3平面向量的应用(精练)(提升版)题组一题组一平面向量在几何中的运用1.(2023·全国·高三专题练习)已知的内角A,B,C所对的边分别为a,b,c,且,,,则边上的中线长为(

)A.49 B.7 C. D.2(2023·海南·模拟预测)在直角梯形ABCD中,,,且,.若线段CD上存在唯一的点E满足,则线段CD的长的取值范围是(

)A. B. C. D.3.(2023·云南)中,若,,点满足,直线与直线相交于点,则(

)A. B. C. D.4(2023·全国·信阳高中)已知四边形是矩形,,,,,,则(

)A. B. C. D.5(2023·湖南张家界)如图,在梯形ABCD中,,,,,,若M,N是线段BC上的动点,且,则的最小值为(

)A. B. C. D.6.(2023·浙江·镇海中学)已知平面向量、、满足,则与所成夹角的最大值是(

)A. B. C. D.7(2023·湖南·周南中学)已知边长为2的菱形ABCD中,点F为BD上一动点,点E满足,,则的最小值为(

)A.0 B. C. D.28.(2023·江苏·无锡市教育科学研究院)点是边长为2的正三角形的三条边上任意一点,则的最小值为___________.9.(2023·上海市晋元高级中学)“燕山雪花大如席”,北京冬奥会开幕式将传统诗歌文化和现代奥林匹克运动联系在一起,天衣无缝,让人们再次领略了中国悠久的历史积淀和优秀传统文化恒久不息的魅力.顺次连接图中各顶点可近似得到正六边ABCDEF.若正六边形的边长为1,点P是其内部一点(包含边界),则的取值范围为___________.10.(2023·湖南)已知平面四边形中,,,,,,则_______.题组二题组二三角形的四心1.(2023·湖南湘潭·高三开学考试)在四边形中,为的重心,,点在线段上,则的最小值为(

)A. B. C. D.02.(2023·全国·课时练习)平面内及一点满足,则点是A.内心 B.外心 C.重心 D.垂心3.(2023·湖南·怀化市第三中学)已知,为三角形所在平面上的一点,且点满足:,则点为三角形的A.外心 B.垂心 C.重心 D.内心4.(2023·全国·高三专题练习)已知是三角形的外心,若,且,则实数的最大值为(

)A.3 B. C. D.5.(2023·江西·高三阶段练习(理))已知O是三角形ABC的外心,若,且,则实数m的最大值为(

)A. B. C. D.6.(2023·辽宁·沈阳市第一中学)已知O为锐角三角形的外心,,则的值为(

)A. B. C. D.7.(2023·全国·高三专题练习)若为所在平面内一点,且则点是的(

)A.重心 B.外心 C.内心 D.垂心8.(2023·安徽蚌埠·模拟预测(理))已知点P是的重心,则下列结论正确的是(

)A.B.C.D.9.(2023·全国·高三专题练习)已知是平面上的一定点,是平面上不共线的三个点,动点满足,,则动点的轨迹一定通过的(

)A.重心 B.外心 C.内心 D.垂心10.(2023·全国·高三专题练习)已知是圆心为O,半径为R的圆的内接三角形,M是圆O上一点,G是的重心.若,则___________.题组三题组三三角形的面积比1.(2023·全国·高三专题练习)P是所在平面内一点,若,则(

)A. B. C. D.2.(2023吉林·桦甸市第四中学高一期末)已知点是所在平面内的一点,若,则__________.3.(2023·全国·高三专题练习)点为内一点,,则的面积之比是___________.4.(2023·黑龙江·哈尔滨三中高一阶段练习)已知是内部一点,且,则的面积与的面积之比为___________.5.(2023·山东)已知点为内一点,,则的面积之比为______.6.(2023·全国·高三专题练习)已知为内一点,,则,的面积之比为______.7.(2023山西)若点O在内,且满足,设为的面积,为的面积,则=________.8.(2023·江西·南昌县莲塘第一中学高一期末(文))点是所在平面内一点,若,则_______.题组四题组四平面向量的综合运用1.在平面直角坐标系中,已知圆及圆内的一点,圆的过点的直径为,若线段是圆的所有过点的弦中最短的弦,则的值为()A.8 B.16 C.4 D.2.(2023·河南模拟)已知平行四边形中,,,对角线与相交于点O,点M是线段上一点,则的最小值为()A. B. C. D.3.(2023·东海模拟)已知点A,B,C均位于同一单位圆O上,且,若,则的取值范围为.4.(2023·柯桥模拟)已知平面向量满足:与的夹角为,记是的最大值,则的最小值是.5.(2023高一下·南阳期末)《易经》是阐述天地世间关于万象变化的古老经典,如图,这是《易经》中记载的几何图形—八卦图.图中正八边形代表八卦,中间的圆代表阴阳太极图,其余八块面积相等的图形代表八卦图.已知正八边形ABCDEFGH的边长为2,P是正八边形ABCDEFGH所在平面内的一点,则的最小值为.10.3平面向量的应用(精练)(提升版)题组一题组一平面向量在几何中的运用1.(2023·全国·高三专题练习)已知的内角A,B,C所对的边分别为a,b,c,且,,,则边上的中线长为(

)A.49 B.7 C. D.答案:D【解析】因为,故可得,根据余弦定理可得,故,不妨取中点为,故,故.即边上的中线长为.故选:.2(2023·海南·模拟预测)在直角梯形ABCD中,,,且,.若线段CD上存在唯一的点E满足,则线段CD的长的取值范围是(

)A. B. C. D.答案:B【解析】

如图所示,以A为坐标原点,和分别为x轴和y轴正方向建立直角坐标系.则,设DE的长为x,则,则,,所以,解得或,由题意知:,且点E存在于CD上且唯一,知CD的长的取值范围是,故选:B.3.(2023·云南)中,若,,点满足,直线与直线相交于点,则(

)A. B. C. D.答案:A【解析】如图所示,以点为原点,为轴构建直角坐标系,因为,,所以,,,设,因为、、三点共线,所以,,,因为,、、三点共线,所以,联立,解得,,,因为,,所以,,因为,所以,故选:A.4(2023·全国·信阳高中)已知四边形是矩形,,,,,,则(

)A. B. C. D.答案:C【解析】解法一如图,以为坐标原点,所在直线为轴,所在直线为轴建立平面直角坐标系,设,则,,,.∴,,,.∴,.∴,.∵,∴,即.又,所以,.∴.∴.∵,∴.故选:C.解法二:∵,,∴.∵,∴,得.∴,.∴.故选:C.5(2023·湖南张家界)如图,在梯形ABCD中,,,,,,若M,N是线段BC上的动点,且,则的最小值为(

)A. B. C. D.答案:C【解析】如图,以点为原点,所在的直线为轴,建立如图所示的平面直角坐标系,,,,,,,,,设,则,其中,,,,时,取得最小值.故选:C.6.(2023·浙江·镇海中学)已知平面向量、、满足,则与所成夹角的最大值是(

)A. B. C. D.答案:A【解析】设与夹角为,与所成夹角为,,所以,,①,②又,③②与③联立可得,④①④联立可得,当且仅当时,取等号,,,则,故与所成夹角的最大值是,7(2023·湖南·周南中学)已知边长为2的菱形ABCD中,点F为BD上一动点,点E满足,,则的最小值为(

)A.0 B. C. D.2答案:C【解析】由题意知:,设,∴,∴,以与交点为原点,为轴,为轴建立如下图所示的平面直角坐标系:,,,设,且则,,当时,故选:C.8.(2023·江苏·无锡市教育科学研究院)点是边长为2的正三角形的三条边上任意一点,则的最小值为___________.答案:【解析】不妨假设在上且,如下图示,所以,在且,设,则,,,所以,故,当时,的最小值为.故答案为:9.(2023·上海市晋元高级中学)“燕山雪花大如席”,北京冬奥会开幕式将传统诗歌文化和现代奥林匹克运动联系在一起,天衣无缝,让人们再次领略了中国悠久的历史积淀和优秀传统文化恒久不息的魅力.顺次连接图中各顶点可近似得到正六边ABCDEF.若正六边形的边长为1,点P是其内部一点(包含边界),则的取值范围为___________.答案:【解析】过点作于所以且,其中,当点与点重合时,在方向上的投影最大,此时,取得最大值为;当点与点重合时,此时,即,故,取得的最小值为的取值范围是.故答案为:.10.(2023·湖南)已知平面四边形中,,,,,,则_______.答案:【解析】如图以为原点建立直角坐标系,则,设,∴,由知,∴,解得,即,∴,∴.故答案为:.题组二题组二三角形的四心1.(2023·湖南湘潭·高三开学考试)在四边形中,为的重心,,点在线段上,则的最小值为(

)A. B. C. D.0答案:A【解析】如图所示:因为,所以,于是有,又,当且仅当时取等号,所以.故选:A2.(2023·全国·课时练习)平面内及一点满足,则点是A.内心 B.外心 C.重心 D.垂心答案:D【解析】同理可得所以点是垂心,选D.3.(2023·湖南·怀化市第三中学)已知,为三角形所在平面上的一点,且点满足:,则点为三角形的A.外心 B.垂心 C.重心 D.内心答案:D【解析】在,上分别取点使得,则,作菱形,则由所以为的平分线.因为,所以,所以,所以三点共线,即在的平分线上..同理证得在其它两角的平分线上,由此求得是三角形的内心.,故选D.4.(2023·全国·高三专题练习)已知是三角形的外心,若,且,则实数的最大值为(

)A.3 B. C. D.答案:D【解析】如图所示:设,,,,由得,化简得,由是三角形的外心可知,是三边中垂线交点,得,,代入上式得,∴.根据题意知,是三角形外接圆的半径,可得,,代入得,∴,当且仅当“”时,等号成立.故选:D.5.(2023·江西·高三阶段练习(理))已知O是三角形ABC的外心,若,且,则实数m的最大值为(

)A. B. C. D.答案:A【解析】设三角形的外接圆半径为,因为O是三角形ABC的外心,故可得,且,,故,即,也即,则,又,由正弦定理可得:,则,故,当且仅当,即时取得最大值.故选:A.6.(2023·辽宁·沈阳市第一中学)已知O为锐角三角形的外心,,则的值为(

)A. B. C. D.答案:A【解析】设锐角三角形的外接圆的半径为,即,,,显然是锐角,因为O为锐角三角形的外心,所以O在锐角三角形内部,由圆的性质可知:,显然是锐角,,或舍去,故选:A7.(2023·全国·高三专题练习)若为所在平面内一点,且则点是的(

)A.重心 B.外心 C.内心 D.垂心答案:D【解析】】,得,即;,得,即;,,即,所以为的垂心.故选:D.8.(2023·安徽蚌埠·模拟预测(理))已知点P是的重心,则下列结论正确的是(

)A.B.C.D.答案:D【解析】如图,是边中点,则共线且,,所以,D正确,由于选项ABC均不能保证系数相等,故不正确.故选:D.9.(2023·全国·高三专题练习)已知是平面上的一定点,是平面上不共线的三个点,动点满足,,则动点的轨迹一定通过的(

)A.重心 B.外心 C.内心 D.垂心答案:B【解析】设的中点为,因为,所以,即,两端同时点乘,所以,所以,所以点在的垂直平分线上,即经过的外心.故选:B.10.(2023·全国·高三专题练习)已知是圆心为O,半径为R的圆的内接三角形,M是圆O上一点,G是的重心.若,则___________.答案:【解析】∵,则∵,则∴同理可得:,∴∵G是的重心,则即∴故答案为:.题组三题组三三角形的面积比1.(2023·全国·高三专题练习)P是所在平面内一点,若,则(

)A. B. C. D.答案:A【解析】由题设,,故共线且,如下图示:所以.故选:A2.(2023吉林·桦甸市第四中学高一期末)已知点是所在平面内的一点,若,则__________.答案:【解析】如图,设为的中点,为的中点,为的中点,因为,所以可得,整理得.又,所以,所以,又,所以.故答案为3.(2023·全国·高三专题练习)点为内一点,,则的面积之比是___________.答案:【解析】因为,所以,设为中点,为中点,为三角形的中位线,则,因为,可得,所以三点共线,且,则,,分别设,由图可知,,,则,所以,而,所以,所以,,所以,即的面积之比等于.故答案为:.4.(2023·黑龙江·哈尔滨三中高一阶段练习)已知是内部一点,且,则的面积与的面积之比为___________.答案:【解析】因为,所以,如图:设的中点为,的中点为,所以,即,所以点在三角形的中位线上,所以点到的距离是点到的距离的一半,所以的面积是的面积的一半,即.故答案为:5.(2023·山东)已知点为内一点,,则的面积之比为______.答案:【解析】因为,所以,设为中点,为中点,因为,可得,所以三点共线,且,为三角形的中位线所以,而,所以的面积之比等于故答案为:6.(2023·全国·高三专题练习)已知为内一点,,则,的面积之比为______.答案:【解析】如图所示,由,得,取为中点,为中点,则,所以.故答案为:.7.(2023山西)若点O在内,且满足,设为的面积,为的面积,则=________.答案:【解析】由,可得:延长OA,OB,OC,使OD=2OA,OE=4OB,OF=3OC,如图所示:∵2+3+4=,∴,即O是△DEF的重心,故△DOE,△EOF,△DOF的面积相等,不妨令它们的面积均为1,则△AOB的面积为,△BOC的面积为,△AOC的面积为,故三角形△AOB,△BOC,△AOC的面积之比依次为:::=3:2:4,.故答案为:.8.(2023·江西·南昌县莲塘第一中学高一期末(文))点是所在平面内一点,若,则_______.答案:【解析】∵点是所在平面内一点,且满足,∴点在边上且.∴.故答案为:题组四题组四平面向量的综合运用1.在平面直角坐标系中,已知圆及圆内的一点,圆的过点的直径为,若线段是圆的所有过点的弦中最短的弦,则的值为()A.8 B.16 C.4 D.答案:B【解析】由题意可知,圆的半径为,,,,.

故答案为:B.2.(2023·河南模拟)已知平行四边形中,,,对角线与相交于点O,点M是线段上一点,则的最小值为()A. B. C. D.答案:A【解析】如图所示,以的中点为坐标原点,以所在直线为x轴,以所在直线为y轴,建立如图

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论