天津市塘沽区名校2025届九上数学期末联考试题含解析_第1页
天津市塘沽区名校2025届九上数学期末联考试题含解析_第2页
天津市塘沽区名校2025届九上数学期末联考试题含解析_第3页
天津市塘沽区名校2025届九上数学期末联考试题含解析_第4页
天津市塘沽区名校2025届九上数学期末联考试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

天津市塘沽区名校2025届九上数学期末联考试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.如图,A,B,C是⊙O上的三点,∠BAC=55°,则∠BOC的度数为()A.100° B.110° C.125° D.130°2.如图,为的直径,为上一点,弦平分,交于点,,,则的长为()A.2.2 B.2.5 C.2 D.1.83.如图,在△ABC中,∠A=90°.若AB=12,AC=5,则cosC的值为()A. B. C. D.4.如图,在中,,于点D,,,则AD的长是()A.1. B. C.2 D.45.如图,将矩形沿对角线折叠,使落在处,交于,则下列结论不一定成立的是()A. B.C. D.6.如图,已知AB∥CD∥EF,它们依次交直线l1、l2于点A、D、F和点B、C、E,如果AD:DF=3:1,BE=10,那么CE等于()A. B. C. D.7.在阳光的照射下,一块三角板的投影不会是()A.线段 B.与原三角形全等的三角形C.变形的三角形 D.点8.如图所示,是二次函数y=ax2﹣bx+2的大致图象,则函数y=﹣ax+b的图象不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限9.如图,在中,点P在边AB上,则在下列四个条件中::;;;,能满足与相似的条件是()A. B. C. D.10.下列运算正确的是()A. B.C. D.11.中,,是边上的高,若,则等于()A. B.或 C. D.或12.如图,在Rt△ABC中,∠ACB=90°,CD为AB边上的高,CE为AB边上的中线,AD=2,CE=5,则CD=()A.2 B.3 C.4 D.2二、填空题(每题4分,共24分)13.如图,已知公路L上A,B两点之间的距离为100米,小明要测量点C与河对岸的公路L的距离,在A处测得点C在北偏东60°方向,在B处测得点C在北偏东30°方向,则点C到公路L的距离CD为_____米.14.点与关于原点对称,则__________.15.四边形为的内接四边形,为的直径,为延长线上一点,为的切线,若,则_________.若,则__________.16.己知一个菱形的边长为2,较长的对角线长为2,则这个菱形的面积是_____.17.已知x=2是方程x2-a=0的解,则a=_______.18.若,,,则的度数为__________三、解答题(共78分)19.(8分)“校园安全”受到全社会的广泛关注,某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图,请根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有人,扇形统计图中“基本了解”部分所对应扇形的圆心角为度;(2)请补全条形统计图;(3)若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数.20.(8分)已知四边形ABCD的四个顶点都在⊙O上,对角线AC和BD交于点E.(1)若∠BAD和∠BCD的度数之比为1:2,求∠BCD的度数;(2)若AB=3,AD=5,∠BAD=60°,点C为劣弧BD的中点,求弦AC的长;(3)若⊙O的半径为1,AC+BD=3,且AC⊥BD.求线段OE的取值范围.21.(8分)图①,图②都是8×8的正方形网格,每个小正方形的顶点称为格点.线段OM,ON的端点均在格点上.在图①,图②给定的网格中以OM,ON为邻边各画一个四边形,使第四个顶点在格点上.要求:(1)图①中所画的四边形是中心对称图形;(2)图②中所画的四边形是轴对称图形;(3)所画的两个四边形不全等.22.(10分)如图,一艘船由A港沿北偏东65°方向航行90km至B港,然后再沿北偏西40°方向航行至C港,C港在A港北偏东20°方向,求A,C两港之间的距离.23.(10分)某公司2017年产值2500万元,2019年产值3025万元(1)求2017年至2019年该公司产值的年平均增长率;(2)由(1)所得结果,预计2020年该公司产值将达多少万元?24.(10分)如图1,在中,∠B=90°,,点D,E分别是边BC,AC的中点,连接将绕点C按顺时针方向旋转,记旋转角为.问题发现:当时,_____;当时,_____.拓展探究:试判断:当时,的大小有无变化?请仅就图2的情况给出证明.问题解决:当旋转至A、D、E三点共线时,直接写出线段BD的长.25.(12分)在大课间活动中,体育老师随机抽取了九年级甲、乙两班部分女生进行仰卧起坐的测试,并对成绩进行统计分析,绘制了频数分布表和频数直方图,请你根据图表中的信息完成下列问题:(1)频数分布表中a=,b=;(2)将频数直方图补充完整;(3)如果该校九年级共有女生360人,估计仰卧起坐能够一分钟完成30次或30次以上的女学生有多少人?(4)已知第一组有两名甲班学生,第四组中只有一名乙班学生,老师随机从这两个组中各选一名学生谈心得体会,则所选两人正好都是甲班学生的概率是多少?26.如图,是半圆的直径,是半圆上的点,且于点,连接,若.求半圆的半径长;求的长.

参考答案一、选择题(每题4分,共48分)1、B【分析】由点A、B、C是⊙O上的三点,∠BAC=40°,根据在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半,即可求得∠BOC的度数.【详解】解:∵∠BAC=55°,∴∠BOC=2∠BAC=110°.(圆周角定理)故选:B.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半2、A【分析】连接BD、CD,由勾股定理先求出BD的长,再利用△ABD∽△BED,得出,可解得DE的长.【详解】连接BD、CD,如图所示:∵AB为⊙O的直径,∴∠ADB=90°,∴,∵弦AD平分∠BAC,∴CD=BD=,∴∠CBD=∠DAB,在△ABD和△BED中,∠BAD=∠EBD,∠ADB=∠BDE,∴△ABD∽△BED,∴,即,解得DE=1.1.故选:A.【点睛】此题主要考查了三角形相似的判定和性质及圆周角定理,解答此题的关键是得出△ABD∽△BED.3、A【解析】∵∠A=90°,AC=5,AB=12,∴BC==13,∴cosC=,故选A.4、D【分析】由在Rt△ABC中,∠ACB=90°,CD⊥AB,根据同角的余角相等,可得∠ACD=∠B,又由∠CDB=∠ACB=90°,可证得△ACD∽△CBD,然后利用相似三角形的对应边成比例,即可求得答案.【详解】∵在Rt△ABC中,∠ACB=90°,CD⊥AB,∴∠CDB=∠ACB=90°,∴∠ACD+∠BCD=90°,∠BCD+∠B=90°,∴∠ACD=∠B,∴△ACD∽△CBD,∴,∵CD=2,BD=1,∴,∴AD=4.故选D.【点睛】此题考查相似三角形的判定与性质,解题关键在于证得△ACD∽△CBD.5、C【解析】分析:主要根据折叠前后角和边相等对各选项进行判断,即可选出正确答案.详解:A、BC=BC′,AD=BC,∴AD=BC′,所以A正确.B、∠CBD=∠EDB,∠CBD=∠EBD,∴∠EBD=∠EDB,所以B正确.D、∵sin∠ABE=,∵∠EBD=∠EDB∴BE=DE∴sin∠ABE=.由已知不能得到△ABE∽△CBD.故选C.点睛:本题可以采用排除法,证明A,B,D都正确,所以不正确的就是C,排除法也是数学中一种常用的解题方法.6、C【分析】根据平行线分线段成比例定理得到,得到BC=3CE,然后利用BC+CE=BE=10可计算出CE的长,即可.【详解】解:∵AB∥CD∥EF,

∴,

∴BC=3CE,

∵BC+CE=BE,

∴3CE+CE=10,

∴CE=.

故选C.【点睛】本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例.7、D【分析】将一个三角板放在太阳光下,当它与阳光平行时,它所形成的投影是一条线段;当它与阳光成一定角度但不垂直时,它所形成的投影是三角形.【详解】解:根据太阳高度角不同,所形成的投影也不同.当三角板与阳光平行时,所形成的投影为一条线段;当它与阳光形成一定角度但不垂直时,它所形成的投影是三角形,不可能是一个点,故选D.【点睛】本题考查了平行投影特点,不同位置,不同时间,影子的大小、形状可能不同,具体形状应视其外在形状,及其与光线的夹角而定.8、A【解析】解:∵二次函数y=ax2﹣bx+2的图象开口向上,∴a>0;∵对称轴x=﹣<0,∴b<0;因此﹣a<0,b<0∴综上所述,函数y=﹣ax+b的图象过二、三、四象限.即函数y=﹣ax+b的图象不经过第一象限.故选A.9、D【分析】根据相似三角形的判定定理,结合图中已知条件进行判断.【详解】当,,所以∽,故条件①能判定相似,符合题意;当,,所以∽,故条件②能判定相似,符合题意;当,即AC::AC,因为所以∽,故条件③能判定相似,符合题意;当,即PC::AB,而,所以条件④不能判断和相似,不符合题意;①②③能判定相似,故选D.【点睛】本题考查相似三角形的判定,熟练掌握判定定理是解题的关键.10、D【分析】根据题意利用合并同类项法则、完全平方公式、同底数幂的乘法运算法则及幂的乘方运算法则,分别化简求出答案.【详解】解:A.合并同类项,系数相加字母和指数不变,,此选项不正确;B.,是完全平方公式,(a-b)2=a2-2ab+b2,此选项错误;C.,同底数幂乘法底数不变指数相加,a2·a3=a5,此选项不正确;D.,幂的乘方底数不变指数相乘,(-a)4=(-1)4.a4=a4,此选项正确.故选:D【点睛】本题考查了有理式的运算法则,合并同类项的关键正确判断同类项,然后按照合并同类项的法则进行合并;遇到幂的乘方时,需要注意若括号内有“-”时,其结果的符号取决于指数的奇偶性.11、B【分析】根据题意画出图形,当△ABC中为锐角三角形或钝角三角形两种情况解答,结合已知条件可以推出△ABD∽△BCD,即可得出∠ABC的度数.【详解】(1)如图,当△ABC中为锐角三角形时,

∵BD⊥AC,∴△ABD∽△BCD,

∵∠A=30°,

∴∠ABD=∠C=60°,∠A=∠CBD=30°,

∴∠ABC=90°.

(2)如图,当△ABC中为钝角三角形时,

∵BD⊥AC,∴△ABD∽△BCD,

∵∠A=30°,

∴∠ABD=∠DCB=60°,∠A=∠DBC=30°,

∴∠ABC=30°.

故选择B.【点睛】本题考查了相似三角形的判定与性质,将三角形分锐角三角形和钝角三角形分别讨论是解题的关键.12、C【解析】分析:根据直角三角形的性质得出AE=CE=1,进而得出DE=3,利用勾股定理解答即可.详解:∵在Rt△ABC中,∠ACB=90°,CE为AB边上的中线,CE=1,∴AE=CE=1,∵AD=2,∴DE=3,∵CD为AB边上的高,∴在Rt△CDE中,CD=,故选C.点睛:此题考查直角三角形的性质,关键是根据直角三角形的性质得出AE=CE=1.二、填空题(每题4分,共24分)13、50.【分析】作CD⊥直线l,由∠ACB=∠CAB=30°,AB=50m知AB=BC=50m,∠CBD=60°,根据CD=BCsin∠CBD计算可得.【详解】如图,过点C作CD⊥直线l于点D,∵∠BCD=30°,∠ACD=60°,∴∠ACB=∠CAB=30°,∵AB=100m,∴AB=BC=100m,∠CBD=60°,在Rt△BCD中,∵sin∠CBD=,∴CD=BCsin∠CBD=100×=50(m),故答案是:50.【点睛】本题主要考查解直角三角形的应用,解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.14、【分析】直接利用关于原点对称点的性质分析得出答案.【详解】解:∵点P(-4,7)与Q(1m,-7)关于原点对称,∴-4=-1m,解得:m=1,故答案为:1.【点睛】此题主要考查了关于原点对称点的性质,正确掌握横纵坐标的符号是解题关键.15、【分析】连接OC,AC、过点A作AF⊥CE于点F,根据相似三角形的性质与判定,以及勾股定理即可求出答案.【详解】解:连接OC,

∵CE是⊙O的切线,

∴∠OCE=90°,

∵∠E=20°,

∴∠COD=70°,

∵OC=OD,∴∠ABC=180°-55°=125°,

连接AC,过点A做AF⊥CE交CE于点F,

设OC=OD=r,

∴OE=8+r,

在Rt△OEC中,

由勾股定理可知:(8+r)2=r2+122,

∴r=5,

∵OC∥AF

∴△OCE∽△AEF,故答案为:【点睛】本题考查圆的综合问题,涉及勾股定理,相似三角形的性质与判定,切线的性质等知识,需要学生灵活运用所学知识.16、【解析】分析:根据菱形的性质结合勾股定理可求出较短的对角线的长,再根据菱形的面积公式即可求出该菱形的面积.详解:依照题意画出图形,如图所示.在Rt△AOB中,AB=2,OB=,∴OA==1,∴AC=2OA=2,∴S菱形ABCD=AC•BD=×2×2=2.故答案为2.点睛:本题考查了菱形的性质以及勾股定理,根据菱形的性质结合勾股定理求出较短的对角线的长是解题的关键.17、4【分析】将x=2代入方程计算即可求出a的值.【详解】解:将x=2代入方程得:4-a=0,解得:a=4,故答案为:4.【点睛】本题考查了一元二次方程的解,方程的解即为能使方程左右两边相等的未知数的值.18、【分析】先根据三角形相似求,再根据三角形内角和计算出的度数.【详解】解:如图:∵∠A=50°,,

∴∵,

故答案为.【点睛】本题考查了相似三角形的性质:相似三角形的对应角相等.三、解答题(共78分)19、(1)60,90;(2)见解析;(3)300人【解析】(1)由了解很少的有30人,占50%,可求得接受问卷调查的学生数,继而求得扇形统计图中“基本了解”部分所对应扇形的圆心角;(2)由(1)可求得了解的人数,继而补全条形统计图;(3)利用样本估计总体的方法,即可求得答案.【详解】解:(1)∵了解很少的有30人,占50%,∴接受问卷调查的学生共有:30÷50%=60(人);∴扇形统计图中“基本了解”部分所对应扇形的圆心角为:×360°=90°;故答案为60,90;(2)60﹣15﹣30﹣10=5;补全条形统计图得:(3)根据题意得:900×=300(人),则估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数为300人.【点睛】本题考查了条形统计图与扇形统计图,解题的关键是熟练的掌握条形统计图与扇形统计图的相关知识点.20、(1)120°;(2);(3)≤OE≤【分析】(1)利用圆内接四边形对角互补构建方程解决问题即可.(2)将△ACD绕点C逆时针旋转120°得△CBE,根据旋转的性质得出∠E=∠CAD=30°,BE=AD=5,AC=CE,求出A、B、E三点共线,解直角三角形求出即可;(3)由题知AC⊥BD,过点O作OM⊥AC于M,ON⊥BD于N,连接OA,OD,判断出四边形OMEN是矩形,进而得出OE2=2﹣(AC2+BD2),设AC=m,构建二次函数,利用二次函数的性质解决问题即可.【详解】解:(1)如图1中,∵四边形ABCD是⊙O的内接四边形,∴∠A+∠C=180°,∵∠A:∠C=1:2,∴设∠A=x,∠C=2x,则x+2x=180°,解得,x=60°,∴∠C=2x=120°.(2)如图2中,∵A、B、C、D四点共圆,∠BAD=60°,∴∠BCD=180°﹣60°=120°,∵点C为弧BD的中点,∴BC=CD,∠CAD=∠CAB=∠BAD=30°,将△ACD绕点C逆时针旋转120°得△CBE,如图2所示:则∠E=∠CAD=∠CAB=30°,BE=AD=5,AC=CE,∴∠ABC+∠EBC=(180°﹣∠CAB﹣∠ACB)+(180°﹣∠E﹣∠BCE)=360°﹣(∠CAB+∠ACB+∠ABC)=360°﹣180°=180°,∴A、B、E三点共线,过C作CM⊥AE于M,∵AC=CE,∴AM=EM=AE=(AB+AD)=×(3+5)=4,在Rt△AMC中,AC=.(3)过点O作OM⊥AC于M,ON⊥BD于N,连接OA,OD,∵OA=OD=1,OM2=OA2﹣AM2,ON2=OD2﹣DN2,AM=AC,DN=BD,AC⊥BD,∴四边形OMEN是矩形,∴ON=ME,OE2=OM2+ME2,∴OE2=OM2+ON2=2﹣(AC2+BD2)设AC=m,则BD=3﹣m,∵⊙O的半径为1,AC+BD=3,∴1≤m≤2,OE2=2﹣[(AC+BD)2﹣2AC×BD]=﹣m2+m﹣=﹣(m﹣)2+,∴≤OE2≤,∴≤OE≤.【点睛】本题主要考查的是圆和四边形的综合应用,掌握圆和四边形的基本性质结合题目条件分析题目隐藏条件是解题的关键.21、(1)见解析;(2)见解析;(3)见解析【分析】(1)设小正方形的边长为1,由勾股定理可知,由图,结合题中要求可以OM,ON为邻边画一个菱形;(2)符合题意的有菱形、筝形等是轴对称图形;(3)图①和图②的两个四边形不能是完全相同的.【详解】解:(1)如图即为所求(2)如图即为所求【点睛】本题考查了轴对称与中心对称图形,属于开放题,熟练掌握轴对称与中心对称图形的含义是解题的关键.22、(90+30)km.【分析】过B作BE⊥AC于E,在Rt△ABE中,由∠ABE=45°,AB=,可得AE=BE=AB=90km,在Rt△CBE中,由∠ACB=60°,可得CE=BE=30km,继而可得AC=AE+CE=90+30.【详解】解:根据题意得,∠CAB=65°﹣20°=45°,∠ACB=40°+20°=60°,AB=90,过B作BE⊥AC于E,∴∠AEB=∠CEB=90°,在Rt△ABE中,∵∠ABE=45°,AB=,∴AE=BE=AB=90km,在Rt△CBE中,∵∠ACB=60°,∴CE=BE=30km,∴AC=AE+CE=90+30,∴A,C两港之间的距离为(90+30)km.【点睛】本题考查了解直角三角形的应用,方向角问题,三角形的内角和,是基础知识比较简单.23、(1)这两年产值的平均增长率为;(2)预计2020年该公产值将达到3327.5万元.【分析】(1)先设出增长率,再根据2019年的产值列出方程,解方程即可得出答案;(2)根据(1)中求出的增长率乘以2019年的产值,再加上2019年的产值,即可得出答案.【详解】解:设增长率为,则2018年万元,2019年万元.则,解得,或(不合题意舍去).答:这两年产值的平均增长率为.(2)(万元).故由(1)所得结果,预计2020年该公产值将达到3327.5万元.【点睛】本题考查的是一元二次方程的应用——增长率问题,解题关键是根据题意列出方程.24、(1)①;②;(2)的大小没有变化;(3)BD的长为:.【分析】(1)①当α=0°时,在Rt△ABC中,由勾股定理,求出AC的值是多少;然后根据点D、E分别是边BC、AC的中点,分别求出AE、BD的大小,即可求出的值是多少.②α=180°时,可得AB∥DE,然后根据,求出的值是多少即可.(2)首先判断出∠ECA=∠DCB,再根据,判断出△ECA∽△DCB,然后由相似三角形的对应边成比例,求得答案.(3)分两种情况分析,A、D、E三点所在直线与BC不相交和与BC相交,然后利用勾股定理分别求解即可求得答案.【详解】解:(1)①当α=0°时,∵Rt△ABC中,∠B=90°,∴AC=,∵点D、E分别是边BC、AC的中点,∴AE=AC=5,BD=BC=4,∴.②如图1,当α=180°时,可得AB∥DE,∵,∴.故答案为:①;②.(2)如图2,当0°≤α<360°时,的大小没有

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论