2022-2023学年吉林省通化市外国语学校九年级数学第一学期期末教学质量检测试题含解析_第1页
2022-2023学年吉林省通化市外国语学校九年级数学第一学期期末教学质量检测试题含解析_第2页
2022-2023学年吉林省通化市外国语学校九年级数学第一学期期末教学质量检测试题含解析_第3页
2022-2023学年吉林省通化市外国语学校九年级数学第一学期期末教学质量检测试题含解析_第4页
2022-2023学年吉林省通化市外国语学校九年级数学第一学期期末教学质量检测试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.顺次连接平行四边形四边的中点所得的四边形是()A.矩形 B.菱形 C.正方形 D.平行四边形2.有四张背面一模一样的卡片,卡片正面分别写着一个函数关系式,分别是y=2x, y=x2-3A.14B.12C.33.如图,为⊙O的直径,弦于,则下面结论中不一定成立的是()A. B.C. D.4.下列一元二次方程中,两个实数根之和为2的是()A.2x2+x﹣2=0 B.x2+2x﹣2=0 C.2x2﹣x﹣1=0 D.x2﹣2x﹣2=05.若二次函数的图象与轴仅有一个公共点,则常数的为()A.1 B.±1 C.-1 D.6.如图,已知△ABC中,∠C=90°,AC=BC=,将△ABC绕点A顺时针方向旋转60°得到△A′B′C′的位置,连接C′B,则C′B的长为()A.2- B. C. D.17.把函数的图像绕原点旋转得到新函数的图像,则新函数的表达式是()A. B.C. D.8.如图,正方形中,为的中点,的垂直平分线分别交,及的延长线于点,,,连接,,,连接并延长交于点,则下列结论中:①;②;③;④;⑤;⑥;⑦.正确的结论的个数为()A.3 B.4 C.5 D.69.要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为5,6,9,另一个三角形的最长边长为4.5,则它的最短边长是()A. B. C. D.10.甲、乙两名同学在一次用频率去估计概率的实验中,统计了某一结果出现的频率绘出的统计图如图,则符合这一结果的实验可能是()A.掷一枚正六面体的骰子,出现1点的概率B.抛一枚硬币,出现正面的概率C.从一个装有2个白球和1个红球的袋子中任取一球,取到红球的概率D.任意写一个整数,它能被2整除的概率11.下列图形中,是中心对称的图形的是()A.直角三角形 B.等边三角形 C.平行四边形 D.正五边形12.如图,过以为直径的半圆上一点作,交于点,已知,,则的长为()A.7 B.8 C.9 D.10二、填空题(每题4分,共24分)13.如图,为测量某河的宽度,在河对岸边选定一个目标点A,在近岸取点B,C,D,使得AB⊥BC,CD⊥BC,点E在BC上,并且点A,E,D在同一条直线上.若测得BE=10m,EC=5m,CD=8m,则河的宽度AB长为______________m.14.若方程x2﹣2x﹣1=0的两根分别为x1,x2,则x1+x2﹣x1x2的值为_____.15.若圆锥的母线长为4cm,其侧面积,则圆锥底面半径为cm.16.如果一个扇形的半径是1,弧长是,那么此扇形的圆心角的大小为_____度.17.一次安全知识测验中,学生得分均为整数,满分10分,这次测验中甲、乙两组学生人数都为6人,成绩如下:甲:7,9,10,1,5,9;乙:9,6,1,10,7,1.(1)请补充完整下面的成绩统计分析表:平均分方差众数中位数甲组19乙组11(2)甲组学生说他们的众数高于乙组,所以他们的成绩好于乙组,但乙组学生不同意甲组学生的说法,认为他们组的成绩要好于甲组,请你给出一条支持乙组学生观点的理由_____________________________.18.在一个不透明的袋中装有黑色和红色两种颜色的球共个,每个球触颜色外都相同,每次摇匀后随即摸出一个球,记下颜色后再放回袋中,通过大量重复摸球实验后,发现摸到黑球的频率稳定于,则可估计这个袋中红球的个数约为__________.三、解答题(共78分)19.(8分)如图,是的角平分线,延长至点使得.求证:.20.(8分)如图,在△ABC中,CD⊥AB,DE⊥AC,DF⊥BC,垂足分别为D,E,F.(1)求证:CE•CA=CF•CB;(2)EF交CD于点O,求证:△COE∽△FOD;21.(8分)(1)x2+2x﹣3=0(2)(x﹣1)2=3(x﹣1)22.(10分)已知,如图,在平行四边形ABCD中,M是BC边的中点,E是边BA延长线上的一点,连接EM,分别交线段AD于点F、AC于点G.(1)证明:∽(2)求证:;23.(10分)计算:(1)tan60°-+(3.14-π)0;(2)解方程:.24.(10分)如图.已知为半圆的直径,,为弦,且平分.(1)若,求的度数:(2)若,,求的长.25.(12分)一个不透明的口袋中装有4张卡片,卡片上分别标有数字1,﹣3,﹣5,7,这些卡片除数字外都相同,小芳从口袋中随机抽取一张卡片,小明再从剩余的三张卡片中随机抽取一张,请你用画树状图或列表的方法,求两人抽到的数字符号相同的概率.26.为了维护国家主权和海洋权利,海监部门对我国领海实现了常态化巡航管理,如图,正在执行巡航任务的海监船以每小时50海里的速度向正东方航行,在A处测得灯塔P在北偏东60°方向上,继续航行1小时到达B处,此时测得灯塔P在北偏东30°方向上.(1)求∠APB的度数;(2)已知在灯塔P的周围25海里内有暗礁,问海监船继续向正东方向航行是否安全?.

参考答案一、选择题(每题4分,共48分)1、D【解析】试题分析:顺次连接四边形四边的中点所得的四边形是平行四边形,如果原四边形的对角线互相垂直,那么所得的四边形是矩形,如果原四边形的对角线相等,那么所得的四边形是菱形,如果原四边形的对角线相等且互相垂直,那么所得的四边形是正方形,因为平行四边形的对角线不一定相等或互相垂直,因此得平行四边形.故选D.考点:中点四边形的形状判断.2、C【解析】分析:从四张卡片中,抽出y随x的增大而增大的有y=2x, ∵四张卡片中,抽出y随x的增大而增大的有y=2x, ∴取出的卡片上的函数是y随x的增大而增大的概率是343、D【分析】根据垂径定理分析即可.【详解】根据垂径定理和等弧对等弦,得A.B.

C正确,只有D错误.故选D.【点睛】本题考查了垂径定理,熟练掌握垂直于弦(非直径)的直径平分弦且平分这条弦所对的两条弧是解题的关键.4、D【分析】利用根与系数的关系进行判断即可.【详解】方程1x1+x﹣1=0的两个实数根之和为;方程x1+1x﹣1=0的两个实数根之和为﹣1;方程1x1﹣x﹣1=0的两个实数根之和为;方程x1﹣1x﹣1=0的两个实数根之和为1.故选D.【点睛】本题考查了根与系数的关系:若x1,x1是一元二次方程ax1+bx+c=0(a≠0)的两根时,x1+x1,x1x1.5、C【分析】函数为二次函数与x轴仅有一个公共点,所以根据△=0即可求出k的值.【详解】解:当时,二次函数y=kx2+2x-1的图象与x轴仅有一个公共点,

解得k=-1.故选:C.【点睛】本题考查二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点与一元二次方程ax2+bx+c=0根之间的关系.△=b2-4ac决定抛物线与x轴的交点个数.△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.6、C【分析】如图,连接BB′,延长BC′交AB′于点D,证明△ABC′≌△B′BC′,得到∠DBB′=∠DBA=30°;求出BD、C′D的长,即可解决问题.【详解】解:如图,连接BB′,延长BC′交AB′于点D,

由题意得:∠BAB′=60°,BA=B′A,

∴△ABB′为等边三角形,

∴∠ABB′=60°,AB=B′B;

在△ABC′与△B′BC′中,∴△ABC′≌△B′BC′(SSS),

∴∠DBB′=∠DBA=30°,

∴BD⊥AB′,且AD=B′D,∵AC=BC=,∴,∴,,,.故选:C.【点睛】本题考查旋转的性质,全等三角形的性质和判定,等边三角形的判定与性质,等腰直角三角形的性质,直角三角形斜边上的中线.作辅助线构造出全等三角形并求出BC′在等边三角形的高上是解题的关键,也是本题的难点.7、D【分析】二次函数绕原点旋转,旋转后的抛物线顶点与原抛物线顶点关于原点中心对称,开口方向相反,将原解析式化为顶点式即可解答.【详解】把函数的图像绕原点旋转得到新函数的图像,则新函数的表达式:故选:D【点睛】本题考查的是二次函数的旋转,关键是掌握旋转的规律,二次函数的旋转,平移等一般都要先化为顶点式.8、B【分析】①作辅助线,构建三角形全等,证明△ADE≌△GKF,则FG=AE,可得FG=2AO;②设正方形ABCD的边长为2x,则AD=AB=2x,DE=EC=x,证明△ADE∽△HOA,得,于是可求BH及HE的值,可作出判断;③分别表示出OD、OC,根据勾股定理逆定理可以判断;④证明∠HEA=∠AED=∠ODE,OE≠DE,则∠DOE≠∠HEA,OD与HE不平行;

⑤由②可得,根据AR∥CD,得,则;⑥证明△HAE∽△ODE,可得,等量代换可得OE2=AH•DE;⑦分别计算HC、OG、BH的长,可得结论.【详解】解:①如图,过G作GK⊥AD于K,

∴∠GKF=90°,

∵四边形ABCD是正方形,

∴∠ADE=90°,AD=AB=GK,

∴∠ADE=∠GKF,

∵AE⊥FH,

∴∠AOF=∠OAF+∠AFO=90°,

∵∠OAF+∠AED=90°,

∴∠AFO=∠AED,

∴△ADE≌△GKF,

∴FG=AE,

∵FH是AE的中垂线,

∴AE=2AO,

∴FG=2AO,

故①正确;②设正方形ABCD的边长为2x,则AD=AB=2x,DE=EC=x,,易得△ADE∽△HOA,,,Rt△AHO中,由勾股定理得:AH=,∴BH=AH-AB=,∵HE=AH=,∴HE=5BH;

故②正确;③,,∴,∴OC与OD不垂直,故③错误;

④∵FH是AE的中垂线,

∴AH=EH,

∴∠HAE=∠HEA,

∵AB∥CD,

∴∠HAE=∠AED,

Rt△ADE中,∵O是AE的中点,

∴OD=AE=OE,

∴∠ODE=∠AED,

∴∠HEA=∠AED=∠ODE,

当∠DOE=∠HEA时,OD∥HE,

但AE>AD,即AE>CD,

∴OE>DE,即∠DOE≠∠HEA,

∴OD与HE不平行,

故④不正确;

⑤由②知BH=,,延长CM、BA交于R,

∵RA∥CE,

∴∠ARO=∠ECO,

∵AO=EO,∠ROA=∠COE,

∴△ARO≌△ECO,

∴AR=CE,

∵AR∥CD,,故⑤正确;

⑥由①知:∠HAE=∠AEH=∠OED=∠ODE,

∴△HAE∽△ODE,∵AE=2OE,OD=OE,

∴OE•2OE=AH•DE,

∴2OE2=AH•DE,

故⑥正确;

⑦由②知:HC=,∵AE=2AO=OH=,tan∠EAD=,,,∵FG=AE,,∴OG+BH=,∴OG+BH≠HC,

故⑦不正确;

综上所述,本题正确的有;①②⑤⑥,共4个,

故选:B.【点睛】本题是相似三角形的判定与性质以及勾股定理、线段垂直平分线的性质、正方形的性质的综合应用,正确作辅助线是关键,解答时证明三角形相似是难点.9、B【分析】根据题意可得出两个三角形相似,利用最长边数值可求出相似比,再用三角形的最短边乘以相似比即可.【详解】解:由题意可得出:两个三角形的相似比为:,所以另一个三角形最短边长为:.故选:B.【点睛】本题考查的知识点是相似三角形的相似比,根据题目求出两个三角形的相似比是解此题的关键.10、C【解析】解:A.掷一枚正六面体的骰子,出现1点的概率为,故此选项错误;B.掷一枚硬币,出现正面朝上的概率为,故此选项错误;C.从一装有2个白球和1个红球的袋子中任取一球,取到红球的概率是:≈0.33;故此选项正确;D.任意写出一个整数,能被2整除的概率为,故此选项错误.故选C.11、C【分析】根据中心对称的定义,结合所给图形即可作出判断.【详解】解:A.直角三角形不是中心对称图象,故本选项错误;B.等边三角形不是中心对称图象,故本选项错误;C.平行四边形是中心对称图象,故本选项正确;D.正五边形不是中心对称图象,故本选项错误.故选:C.【点睛】本题考查了中心对称图形的特点,属于基础题,判断中心对称图形的关键是旋转180°后能够重合.12、B【分析】根据条件得出,解直角三角形求出BD,根据勾股定理求出CD,代入,即可求出AC的长.【详解】∵AB为直径,

∴,

∵CD⊥AB,

∴,

∴,

∴,

∵,BC=6,

∴,∴,∴,∵,∴,∴.

故选:B.【点睛】本题考查了圆周角定理,勾股定理,解直角三角形的应用,能够正确解直角三角形是解此题的关键.二、填空题(每题4分,共24分)13、16【分析】先证明,然后再根据相似三角形的性质求解即可.【详解】∵AB⊥BC,CD⊥BC且∠AEB=∠DEC∴∴∴故本题答案为:16.【点睛】本题考查了相似三角形的应用,准确识图,熟练掌握和灵活运用相似三角形的判定定理与性质定理是解题的关键.14、1【解析】根据题意得x1+x2=2,x1x2=﹣1,所以x1+x2﹣x1x2=2﹣(﹣1)=1.故答案为1.15、3【解析】∵圆锥的母线长是5cm,侧面积是15πcm2,∴圆锥的侧面展开扇形的弧长为:l==6π,∵锥的侧面展开扇形的弧长等于圆锥的底面周长,∴r==3cm,16、1【分析】直接利用扇形弧长公式代入求出即可.【详解】解:扇形的半径是1,弧长是,,即,解得:,此扇形所对的圆心角为:.故答案为:1.【点睛】此题主要考查了弧长公式的应用,正确利用弧长公式是解题关键.17、(1),1.5,1;(2)两队的平均分相同,但乙组的方差小于甲组方差,所以乙组成绩更稳定.【分析】(1)根据方差、平均数的计算公式求出甲组方差和乙组平均数,根据中位数的定义,取出甲组中位数;(2)根据(1)中表格数据,分别从反应数据集中程度的中位数和平均分及反应数据波动程度的方差比较甲、乙两组,由此找出乙组优于甲组的一条理由.【详解】(1)甲组方差:甲组数据由小到大排列为:5,7,1,9,9,10故甲组中位数:(1+9)÷2=1.5乙组平均分:(9+6+1+10+7+1)÷6=1填表如下:平均分方差众数中位数甲组191.5乙组111(2)两队的平均分相同,但乙组的方差小于甲组,所以乙组成绩更稳定.故答案为:,1.5,1;两队的平均分相同,但乙组的方差小于甲组方差,所以乙组成绩更稳定.【点睛】本题考查数据分析,熟练掌握反应数据集中趋势的中位数、众数和平均数以及反应数据波动程度的方差的计算公式和定义是解题关键.18、【分析】根据频率的定义先求出黑球的个数,即可知红球个数.【详解】解:黑球个数为:,红球个数:.故答案为6【点睛】本题考查了频数和频率,频率是频数与总数之比,掌握频数频率的定义是解题的关键.三、解答题(共78分)19、证明见解析.【分析】先根据角平分线的定义可得,再根据等腰三角形的性质可得,从而可得,然后根据相似三角形的判定即可得证.【详解】是的角平分线又.【点睛】本题考查了角平分线的定义、等腰三角形的性质、相似三角形的判定,熟练掌握相似三角形的判定方法是解题关键.20、(1)证明见解析;(2)证明见解析【分析】(1)本题首先根据垂直性质以及公共角分别求证△CED∽△CDA,△CDF∽△CBD,继而以为中间变量进行等量替换证明本题.(2)本题以第一问结论为前提证明△CEF∽△CBA,继而根据垂直性质证明∠OFD=∠ECO,最后利用“角角”判定证明相似.【详解】(1)由已知得:∠CED=∠CDA=90°,∠ECD=∠DCA,∴△CED∽△CDA,∴,即CD2=CE•CA,又∵∠CFD=∠CDB=90°,∠FCD=∠DCB,∴△CDF∽△CBD,∴,即CD2=CB•CF,则CA•CE=CB•CF;(2)∵CA•CE=CB•CF,∴,又∵∠ECF=∠BCA,∴△CEF∽△CBA,∴∠CFE=∠A,∵∠CFE+∠OFD=∠A+∠ECO=90°,∴∠OFD=∠ECO,又∵∠COE=∠FOD,∴△COE∽△FOD.【点睛】本题考查相似的判定与性质综合,相似判定难点首先在于确定哪两个三角形相似,其次是判定定理的选择,相似判定常用“角角”定理,另外需注意相似图形其潜在信息点是边的比例关系以及角等.21、(1)x=﹣3或x=1;(2)x=1或x=4.【分析】(1)用因式分解法求解即可;(2)先移项,再用因式分解法求解即可.【详解】解:(1)∵x2+2x﹣3=0,∴(x+3)(x﹣1)=0,∴x=﹣3或x=1;(2)∵(x﹣1)2=3(x﹣1),∴(x﹣1)[(x﹣1)﹣3]=0,∴(x﹣1)(x﹣4)=0,∴x=1或x=4;【点睛】本题考查了一元二次方程的解法,常用的方法由直接开平方法、配方法、因式分解法、求根公式法,灵活选择合适的方法是解答本题的关键.22、(1)详见解析;(2)详见解析.【分析】(1)利用平行线的性质及对顶角相等即可证明∽;(2)由相似三角形的性质可知,由AD∥BC可知,通过等量代换即可证明结论.【详解】(1)证明:∥∽(2)证明:∵∽∵AD∥BC,∴又∵CM=BM,【点睛】本题主要考查相似三角形的判定及性质,掌握相似三角形的判定方法及性质是解题的关键.23、(1)2;(2)x1=2,x2=1.【分析】(1)根据特殊角的三角函数值,绝对值的意义和零指数幂的运算法则计算即可;(2)利用因式分解法

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论