版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Chapter7TheoremofMomentofMomentumMainContents§7.1Momentofmomentumofaparticleandasystemofparticles§7.2Momentofinertiaofarigidbodywithrespecttotheaxis§7.3Momentofmomentumtheorem§7.4Differentialequationsfortherotationofarigidbodyaroundafixed-axis§7.5Momentofmomentumtheoremforasystemwithrespecttoitscenterofmass§7.6Differentialequationsofplanemotionofarigidbody1.Forexamplewhenasymmetricalcircularwheelrotatesaroundaunmovingcenterofmass,nomatterhowfasttheroundwheelrotates,nomatterwhatchangestherotatingstatehave,itsmomentumisalwaysequaltozero,somomentumcannotcharacterizeormeasurethemotion.2.Theoremofmomentumandtheoremofmotionofthecenterofmassdiscussedtherelationshipbetweenprincipalvectoroftheexternalforcesystemandthemotionchangeofasystemofparticles,butdidnotdiscusstheinfluenceoftheprincipalmomentoftheexternalforcesystemonthemotionchangeofthesystemofparticles.MomentofmomentumtheoremTheoremofmomentumdescribedinthepreviouschaptercannotcompletelydescribethemotionstateofasystemofparticles.Therefore,wemusthavenewconcepttodescribethesimilarmotion.Momentofmomentumtheoremisthetheoryofthedescriptionofparticlesrelativetoapoint(orafixedaxis)orthecenterofmassmotion.Assumingaparticleinaninstanthasthemomentum
,thepositionoftheparticlerelativetopointisrespectedthroughpositionvector,asshowninfigure.§7.1Momentofmomentumofaparticleandasystemofparticles1.Momentofmomentumofaparticle
Themomentofmomentumofaparticleaboutpointisdefinedasthe“moment”oftheparticle’smomentumaboutpoint,thatisEstablisharectangularcoordinatesystembyafixedpointastheorigin,thecoordinateofaparticleis,thentheanalysisofprojectiontypeofthepositionvectorandthevelocityoftheparticleare:ThemomentofmomentumofaparticlewithrespecttoapointOcanbewrittenasadeterminantform:
Themomentofmomentumofaparticlewithrespecttoafixedpointisavector,
thevectorisperpendiculartotheplaneformedbythepositionvectorandthevelocity,itsmagnitudeisequaltotheareaofparallelogramcomposedofthepositionvectorandthemomentum,itssenseisgovernedbytheright-handrule,
andthemomentofmomentumoftheparticlewithrespecttoafixedpointisanpositioningvector,whichshouldbedrawnonthecenterofmomentO.§7.1MomentofmomentumofaparticleandasystemofparticlesThemomentofmomentumofaparticlewithrespecttothepointOisprojectedtotherectangularcoordinateaxis,
accordingtotherelationshipbetweenthemomentofthevectoraboutthepointandthemomentabouttheaxisthroughthepointweknown,
momentsofmomentumoftheparticleabouteachcoordinateaxisthroughthepointOarerespectively:ThatisTheprojectionofmomentofmomentumaboutafixedpointinanyaxisthroughthepointisequaltomomentofmomentumabouttheaxis.Momentofmomentumaboutanaxisisanalgebraicquantity,theregulationofitssymbolisthesameastheregulationofthesymbolofmomentofforceaboutanaxis,afterprovidingthepositiveoftheaxis,bytheright-handruletodeterminethepositivedirection.TheunitofmomentofmomentuminSIunitsis
or§7.1Momentofmomentumofaparticleandasystemofparticles§7.1Momentofmomentumofaparticleandasystemofparticles2.MomentofmomentumofasystemofparticlesAndthereisThevectorsumofmomentofmomentumofalltheparticlesinasystemaboutpointiscalledthemomentofmomentumofthesystemofparticlesaboutthepoint,thatisThescalarsumofmomentofmomentumofallparticlesinasystemaboutanyaxisiscalledthemomentofmomentumofthesystemofparticlesabouttheaxis.Theprojectionofmomentofmomentumofasystemofparticlesaboutpointintherectangularcoordinateaxisthroughthepointisthemomentofmomentumofthesystemofparticlesabouttheaxisthroughthepoint:wheredenotesthemomentummomentoftheithparticleinthesystemforthepointO.3.Calculationofmomentofmomentumofseveralkindsofrigidbody(1)momentofmomentumofarigidbodyintranslationalmotionwithrespecttoafixedpointCalculationofmomentofmomentumofarigidbodyintranslationalmotionissimilartocalculationformulaofmomentofmomentumofaparticle,whenwecalculatemomentofmomentumofarigidbodyintranslationalmotion,therigidbodycanberegardedasaparticle,whichhasthewholemassoftherigidbodyintranslationalmotion,locatedinthecenterofmassoftherigidbody,andmovingwiththecenterofmassoftherigidbody.§7.1Momentofmomentumofaparticleandasystemofparticles3.Calculationofmomentofmomentumofseveralkindsofrigidbody(2)momentofmomentumofarigidbodyinfixed-axisrotationwithrespecttotheaxisofrotation:
Themomentofmomentumoftheentirerigidbodytothez-axisisMomentofmomentumofarigidbodyinfixed-axisrotationwithrespecttotheaxisofrotationisequaltotheproductofthemassmomentofinertiaoftherigidbodyabouttheaxisanditstheangularvelocity.Lettherigidbodyrotatearoundafixedaxiswithangularvelocity.Themassofthethmassontherigidbodyis,thedistancefromthemasstothez-axisis,andthevelocityofthemassiswhere,
isdefinedasthemassmomentofinertiaoftherigidbodyaboutthez-axis.§7.1Momentofmomentumofaparticleandasystemofparticles§7.2Momentofinertiaofarigidbodywithrespecttoanaxis1.Conceptofthemassmomentofinertia(1)definition:thesumoftheproductofeachparticlemassofabodyandthesquareofeachparticletoanaxisdistanceiscalledthemassmomentofinertiaoftherigidbodyabouttheaxis.Forarigidbodyofcontinuousmassdistribution,then(2)Calculationofthemassmomentofinertiaofsimpleshapedbody(a)ahomogeneousslenderrodAssuminglineardensityofarodis,
consideringmicro-segment,thenthemassofthemicro-segmentis,
thusthemassmomentofinertiaoftherodaboutz-axisisMassoftherodis,
then(b)homogeneousthincircularringAssumingmassofacircularringis,thedistancebetweenmassandthecentralaxisisequaltoradius,thusthemassmomentofinertiaofthecircularringaboutthecentralaxisis(c)ahomogeneousdiskAssumingradiusofthediskis,
massis,Thecircularplateisdividedintoaninfinitenumberofconcentricthinrings,theradiusofanyringisandthewidthis.Themassofthethinringiswhere,isthemassperunitareaofthehomogeneouscircularplate,sotherotationalinertiaofthecircularplatetothecentralaxisis§7.2Momentofinertiaofarigidbodywithrespecttoanaxis(d)homogeneousrectangularplate2.RadiusofgyrationRadiusofgyrationisdefinedasthus3.Theparallel-axistheoremTheorem:themassmomentofinertiaofarigidbodywithrespecttoanyaxisisequaltothemassmomentofinertiaoftherigidbodywithrespecttoaparallelaxisthroughthemasscenterofthebodyplustheproductofthemassofthebodyandthesquareofthedistancebetweenthetwoaxes.Thatis§7.2Momentofinertiaofarigidbodywithrespecttoanaxis§7.2MomentofinertiaofarigidbodywithrespecttoanaxisExample
7-1Figureshowsahomogeneousslenderrodofmassandlength.Determinethemassmomentofinertiaoftherodabouttheaxisthatpassesthoughthemasscenterandisperpendiculartotherodaxis.Solution:themassmomentofinertiaofthehomogeneousslenderrodaboutthez-axisthatpassesthroughitsleftendandisperpendiculartotherodaxisisUsingtheparallel-axistheorem,themassmomentofinertiaabouttheaxisisOCExample
7-2Thependulumissimplifiedasfollows.Weknownmassofhomogeneousslenderrodisandmassofhomogeneousdiskis,lengthofrodis,diameterofdiskis.Determinethemassmomentofinertiaofthependulumaboutthehorizontalaxisthatpassesthroughthesuspensionpoint.Solution:themassmomentofinertiaofthependulumaboutthehorizontalaxisOiswhereAssumingisthemassmomentofinertiaofthediskaboutthecenterC,then
Thus
§7.2MomentofinertiaofarigidbodywithrespecttoanaxisThefirstderivativeofmomentofmomentumwithrespecttotime1.MomentofmomentumtheoremofaparticleAssumingmomentofmomentumofaparticleaboutafixedpointis,themomentoftheforceaboutthesamepointis,asshowninfigureAccordingtotheoremofmomentumofaparticleandHencetheaboveequationbecomessinceHenceweobtain§7.3MomentofmomentumtheoremMomentofmomentumofaparticle:thefirstderivativeofmomentofmomentumofaparticleaboutafixedpointwithrespecttotimeisequaltothemomentaboutthesamepointoftheresultantforceactingontheparticle.Makingaprojectionoftheaboveequationontherectangularcoordinateaxiswhichtakesthecenterofmomentfortheorigin,andnotingtheprojectionofthemomentofmomentumandforceaboutapointonanaxisisequaltomomentofmomentumandforceabouttheaxis,weobtain:2.MomentofmomentumtheoremofasystemofparticlesWeassumeasystemofparticlesthatisaclosedsystemofparticles,thearbitraryithparticleissubjectedtoaresultantinternalforceandaresultantexternalforceaccordingtomomentofmomentumofaparticleweobtain§7.3MomentofmomentumtheoremTherearensameequations,addedtogetherSincetheinternalforcesoccurinequalbutoppositecollinear,thefirsttermontherightsideoftheaboveequationTheleftsideoftheaboveequationhence§7.3MomentofmomentumtheoremMomentofmomentumtheoremofasystemofparticles:thetime–derivativeofmomentofmomentumofasystemofparticlesaboutafixedpointisequaltothevectorsumofthemomentsoftheexternalforcesactingonthesystemaboutthesamepoint.TheprojectionformulaisItmustbepointedoutthat,theabovetheoremofmomentofmomentumexpressionformisonlyapplicabletoafixedpointorafixedaxis.Forageneralmovingpointormovingaxis,thetheoremofmomentofmomentumhasmorecomplicatedexpressions.3.Conservationlawofmomentofmomentum(1)Ifthemomentoftheforceactingontheparticleaboutafixedpointiszero,themomentofmomentumoftheparticleaboutthepointisconstant,thatis(2)Ifthemomentoftheforceactingontheparticleaboutafixedaxisiszero,themomentofmomentumoftheparticleabouttheaxisisconstant,thatis§7.3MomentofmomentumtheoremExample
7-3Asthepictureshows,asmoothballofmassmisplacedinsideafixedcirculartubeofradiusR.Theballisgivenaninitialsmallperturbation,anddeterminethelawofmotionofthesmallball.§7.3MomentofmomentumtheoremSolution:Thetrajectoryoftheballisaknowncirculararc,sothenaturalmethodcanbeusedtodescribethemotionoftheball.Thevelocityoftheballisalwaysalongthetangentdirectionofthearc,soitissuitabletoapplythemomentummomenttheoremtosolvetheproblem.First,thesmallballischosenastheobjectofstudy.TheballisplacedinageneralpositionofmotionwiththeforceofgravitymgandthereactionforceNofthetube,withthedirectionofpointingtothecenterO.ApplyingthemomentummomenttheoremaboutpointO(i.e.,abouttheaxispassingthroughpointOandperpendiculartotheplaneofthecirculartube),wehaveorExample
7-3§7.3MomentofmomentumtheoremConsiderorExample
7-3Substitutingtheaboveequation,yieldsThisisthedifferentialequationofmotionoftheball.Thelawofmotionoftheballisdescribedbythevariableθ.Consideringthatθissmallwhensmallmoving,sosinθ≈θ,andthentheequationcanbesimplifiedasItcanbeseenthattheballdoessimpleharmonicmotion.Thearbitraryconstantsθandαintheequationcanbedeterminedbytheinitialconditionsofmotion.TheSolutionofthisdifferentialequationis§7.3MomentofmomentumtheoremMExample
7-4Windlassofblastfurnacewhichtransportsore,showninfigure.TheradiusofdrumisR,themassism1,thedrumrotatesaboutaxisO.Thetotalmassofthecarandtheoreism2.ThemomentofcoupleactingonthedrumisM,themassmomentofinertiaofthedrumabouttherotatingaxisisJ,dipangleofthetrackisθ.Neglectthemassoftheropeandvariousfriction,determinetheacceleration
aofthecar.§7.3MomentofmomentumtheoremExample
7-4§7.3MomentofmomentumtheoremMSolution:consideringthesystemofboththecarandthedrum,consideringthecarasaparticle.Clockwiseispositive.Themomentofmomentumofasystemofparticlesaboutaxisisand
,ThemomentoftheexternalforceofthesystemisTheexternalforcesactingonthesystemofparticlesincludecouple,gravity;reactionforceofbearingand
constraintforceoftrackactingonthecar.Themomentofforceaboutaxisiszero.Decomposeintoandalongthetrackandvertically,andoffseteachother.since
,we
obtainExample
7-4ApplyingmomentofmomentumofasystemofparticlesaboutaxisO,wehaveIf,then,theaccelerationofthecarupalongtheslope.§7.3MomentofmomentumtheoremMOA
Example
7-5Trytousemomentofmomentumtheoremtoderivethedifferentialequationofmotionofsimplependulum(mathematicalpendulum).§7.3MomentofmomentumtheoremOA
,Example
7-5Solution:consideringthependulumasaparticleAmovingin
thearc,themassofthependulumism,thelengthofthecycloidisl.AssuminginanytransienttheparticleAhavethevelocityv
,theangleofthecycloid
OAandtheplumbline
is
.Choosethefixedaxis
zwhichisthroughsuspensionpointOandperpendiculartotheplaneofmotion
asmomentaxis,applyingmomentofmomentumtheoremofaparticleabouttheaxis.SincemomentofmomentumandmomentofforceareThusweobtainSimplyit,weobtaindifferentialequationofmotionofthependulum.§7.3MomentofmomentumtheoremzaallABzaaθθllABExample
7-6SmallballAandBare
connectedtothestring.Themassofeveryballism,neglecttheothercomponentmassandfriction,thesystemrotatesfreelyaroundaxisz,theinitialangularvelocityofthesystemisω0.Whenthestringisbroken,theangleofeachbarandtheplumblineisθ,determinetheangularvelocityω
ofthesystem.§7.3MomentofmomentumtheoremzaallABzaaθθllABExample
7-6Solution:themomentsofthegravityactingonthesystemandreactionforceofbearingabouttherotatingaxisarezero,soconservationofmomentofmomentumofthesystemabouttheaxis.Whenθ=0,momentofmomentumWhenθ≠0,momentofmomentumBecauseLz1=Lz2,weobtain§7.3MomentofmomentumtheoremorororAssumingtheforcesactingonarigidbodywhichrotatesaroundafixed-axisincludetheactiveforcesand
thereactionforcesofbearingshowninfigure,theseforcesareallexternalforces.Themassmomentofinertiaoftherigidbodyabouttheaxisis,theangularvelocityis,momentofmomentumaboutaxisis.Ifneglectfrictionofbearing,momentsofreactionforcesofbearingaboutaxisarezero,accordingtomomentofmomentumtheoremofthesystemofparticlesaboutaxiswehaveTheaboveequationsarecalleddifferentialequationsfortherotationofarigidbodyaroundafixed-axis.§7.4Differentialequationsfortherotationofarigidbodyaroundafixed-axisExample
7-7Themagnitudeofthemassmomentofinertiaoftherigidbodyshowswhetheritisdifficultoreasyfortherotationalstateofarigidbodytobechanged,thatis:themassmomentofinertiaisameasureofarigidbody’sinertiaconcerningitsrotationalmotion.RαOShowninfigure,weknowntheradiusofpulleyisR,themassmomentofinertiaisJ,belttensionswhichdrivepulleyareF1andF2.Determinetheangularaccelerationofpulleyα
.§7.4Differentialequationsfortherotationofarigidbodyaroundafixed-axisExample
7-7RαOSolution:accordingtodifferentialequationsforrotationofarigidbodyaroundafixed-axiswehavehence
Fromtheaboveequationwesee,onlywhenthefixedpulleyrotatesataconstantspeedor(includingstatic)ataunconstantspeed,butneglectingthemassmomentofinertiaofthepulley,belttensionwhichcrossthefixedpulleyisequal.§7.4Differentialequationsfortherotationofarigidbodyaroundafixed-axisOCbExample
7-8Compoundpendulumcomposesofarigidbodyrotatingaroundthehorizontalaxis.Weknownthemassofcompoundpendulumism,thedistancebetweencenterofgravityCandtherotatingaxisOisOC=b,themassmomentofinertiaofcompoundpendulumabouttherotatingaxisOisJO.WhenswingingstartstheslipanglebetweenOCand
theplumb
lineis
0,andinitialangularvelocityofcompoundpendulumiszero,determinetheslightswinglawofcompoundpendulum.Neglectbearingfrictionandairresistance.§7.4Differentialequationsfortherotationofarigidbodyaroundafixed-axisOCbF1F2mgExample
7-8Solution:forceasshowninfigure.Assumingangleinthecounterclockwisedirectionispositive.Whensmallangleispositive,themomentofgravityaboutpointisnegative.Accordingtodifferentialequationsfortherotationofarigidbodyaroundafixed-axiswehavehenceWhencompoundpendulumswingsslightly,makingsin
≈
.Thenafterlinearizingtheaboveequation,weobtaindifferentialequationofcompoundpendulumwhichswingsslightly.Thisisthestandarddifferentialequationofsimpleharmonicmotion.Wecanseemicro-amplitudevibrationofcompoundpendulumisalsosimpleharmonicmotion.§7.4Differentialequationsfortherotationofarigidbodyaroundafixed-axisExample
7-8OCbF1F2mgConsideringtheinitialconditionsofthemotionofcompoundpendulum:whent=0ThenmotionlawofcompoundpendulumcanbewrittenasSwingingfrequencyω0
andperiodTisrespectivelyUsingtherelationship(b)wecandeterminethemassmomentofinertiaoftherigidbody.Therefore,weputtherigidbodyintoacompoundpendulumandmeasureitsperiodTofswingbyusingtest,thenusingequation(b)wedeterminethemassmomentofinertia§7.4Differentialequationsfortherotationofarigidbodyaroundafixed-axisMomentofmomentumtheoremexpressedaboveisonlyapplicabletofixedpointorfixedaxisintheinertiareferencesystem,thenwhencenterofmomentmoves,howtoapplymomentofmomentumtheorem?Furtherstudiesshowedthat,undercertainconditions,theformofmomentofmomentumtheoremremainsthesame.Oneofthemostimportantcaseis:inthetranslationalcoordinatesystemmovingwiththecenterofmass,takingcenterofmassascenterofmoment,thentheformofmomentofmomentumtheoremremainsthesame.Takingmass
centerCastheorigin,amovingreferencesystemshowninfigure.Inthemovingreferencesystem,therelativeradiusvectorofanymassis,
relativevelocityis.§7.5MomentofmomentumtheoremforasystemwithrespecttoitscenterofmassMomentofmomentumofthesystemwithrespecttothemasscenterCisInfact,momentofmomentumofthesystemaboutthemasscentercalculatedthroughtherelativevelocityoftheparticleorthoughtheabsolutevelocitytheresultisequal,
thatisThepositionvectorofaparticle,aboutfixedpointOis,
theabsolutevelocityis,
thenmomentofmomentumofthesystemaboutfixedpointOisThefigureshows§7.5MomentofmomentumtheoremforasystemwithrespecttoitscenterofmassThusAccordingtotheoremofcompositionofvelocities,wehaveBycalculationformulaofmomentumofasystemofparticlesWheremis
thetotalmassofthesystem,
isvelocityofthemasscenterC.Substitutingtheabovetwoequations,momentofmomentumofthesystemaboutfixedpointOcanbewrittenasThelasttermofaboveequationis,
accordingtotheformulaofmasscentercoordinateispositionvectorofmasscenterCaboutmovingsystem.Cistheoriginofthemovingsystem,
obviously,
thatis,
thenthemiddletermofaboveequationiszero,
and
§7.5MomentofmomentumtheoremforasystemwithrespecttoitscenterofmassTheaboveequationshows,momentofmomentumofasystemofparticlesaboutanypointOisequaltomomentofmomentumwhichfocusesonmasscenterofthesystemaboutpointOplusmomentofmomentumofthesystemaboutmasscenterC.(vectorsum)MomentofmomentumtheoremforasystemofparticlesaboutfixedpointOcanbewrittenasExpandingtheaboveequationinbrackets,
notingtherightside,thustheaboveequationcanbewrittenasthus
Thentheaboveequationbecomes§7.5MomentofmomentumtheoremforasystemwithrespecttoitscenterofmassTherightsideofaboveequationistheprincipalmomentofexternalforceaboutcenterofmass.ThenweobtainThefirstorderderivativeabouttimeofmomentofmomentumofasystemofparticlesaboutmasscenterisequaltotheprincipalmomentofexternalforceactingonthesystemofparticlesaboutmasscenter.Thatismomentofmomentumtheoremforasystemwithrespecttoitscenterofmass.Thetheoremintheformisthesameasmomentofmomentumofasystemofparticleswithrespecttofixedpoint.§7.5Momentofmomentumtheoremforasystemwithrespecttoitscenterofmass§7.6DifferentialequationsofplanemotionofarigidbodyThepositionofrigidbodyinplanemotioncanbedeterminedbypositionofthebasepointandrotationangleofrigidbodyaroundbasepoint.ChoosemasscenterCasbasepoint,
showninfigure,itsordinatesare.AssumingDisanypointontherigidbody,
theangleofCDandx-axisis,thenpositionofrigidbodycanbedeterminedbyand.Motionofrigidbodyisdecomposedintotranslationwiththemasscenterandrotationaroundthemasscenter.ShowninfigureistranslationreferencesystemfixedtomasscenterC,
themotionofrigidbodyinplanemotionwithrespecttothemovingsystemisrotationaroundmasscenterC,
thenmomentofmomentumofrigidbodyaboutmasscenterisisthemassmomentofinertiaofarigidbodywithrespecttoanaxiswhichpassesthroughthecenterofmassandisverticaltothemotionplane,
istheangularvelocity.Assumingtheexternalforcesactingontherigidbodycanbesimplifiedasaplaneforcesystemtothemovingplaneofthemasscenter,
thenapplyingtheoremofmotionofthecenterofmassandmomentofmomentumtheoremwithrespecttothecenterofmass,weobtainisthemassofrigidbody,
isaccelerationofthemasscenter,
isangularvelocityoftherigidbody.TheaboveequationcanbewrittenasTheabovetwoequationsarecalleddifferentialequationsofplanemotionofrigidbody.§7.6DifferentialequationsofplanemotionofarigidbodyThisistheprojectionexpressionofthedifferentialequationofplanemotionofarigidbodyinarectangularcoordinatesystem.§7.6DifferentialequationsofplanemotionofarigidbodyMCrxExample
7-9Ahomogeneousroundwheelofradiusrandmassmrollsalongahorizontalline,showninfigure.AssumingradiusofgyrationofwheelisρC,momentofcoupleactingonthewheelisM.Determinetheaccelerationofthecenterofwheel.Assumingthecoefficientofthestaticslidingfrictionofthewheelonthegroundisfs,whatconditionsmustmomentofcoupleMmeet,thewheeldoesn’tslide?§7.6DifferentialequationsofplanemotionofarigidbodyaC=
rαMCrxαExample
7-9Solution:accordingtodifferentialequationsofplanemotionofarigidbody,wecanwritethefollowingthreeequations:Mandαinaclockwisedirectionispositive.sinceaCy=0,thenaCx=aC.Accordingtotheconditionofroundwheelrollingwithoutsliding,wehave§7.6DifferentialequationsofplanemotionofarigidbodyExample
7-9Simultaneoussolution,weobtain:Inordertomakeroundwheelfromstaticrollswithoutsliding,theremustbeF≤fsFN,orF≤fsmg.Thenweobtaintheconditionofroundwheelrollingwithoutsliding§7.6DifferentialequationsofplanemotionofarigidbodyMCrxαRθCExample
7-10Afterahomogeneousroundwheelofradiusrandmassmsubjectedtoaslightdisturbance,itrollsbackandforthinacirculararcofradiusR,showninfigure.Assumingthesurfaceisroughenough,roundwheelrollswithoutsliding.DeterminethelawofmotionofthemasscenterC.§7.6Differentialequationsofplanemotionofarigidbody(b)(c)(a)Example
7-10RθCr(+)αSolution
:roundwheelmakeplanemotiononthesurface,theexternalforcesincludegravity
mg,thenormalreactionforceofthearcsurfaceFNandfrictionF.
Assumingangleθinacounterclockwisedirectionispositive,takingthetan
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025版事业单位聘用合同书(二零二五年度)修订本3篇
- 2025年水库水面旅游开发合作协议3篇
- 2025年采摘果园休闲农业项目承包经营合同3篇
- 2025年铁路旅客承运人服务质量提升与旅客满意度合同3篇
- 二零二五版跨区域二手房产权转移协助合同
- 2025版乌笑与配偶离婚后子女教育费用支付调整协议3篇
- 万科物业2024全年服务细则协议版
- 三方借款协作协议2024年适用版版B版
- 美容院绿色环保材料采购与2025年度股份合作协议4篇
- 2025年版餐饮服务消费者免责条款协议3篇
- 招标师《招标采购项目管理》近年考试真题题库(含答案解析)
- 微生物组与唾液腺免疫反应-洞察分析
- 2024公共数据授权运营实施方案
- 2024年国家焊工职业技能理论考试题库(含答案)
- 《向心力》 教学课件
- 结构力学数值方法:边界元法(BEM):边界元法的基本原理与步骤
- 北师大版物理九年级全一册课件
- 2024年第三师图木舒克市市场监督管理局招录2人《行政职业能力测验》高频考点、难点(含详细答案)
- RFJ 006-2021 RFP型人防过滤吸收器制造与验收规范(暂行)
- 盆腔炎教学查房课件
- 110kv各类型变压器的计算单
评论
0/150
提交评论