软骨之黏弹特性_第1页
软骨之黏弹特性_第2页
软骨之黏弹特性_第3页
软骨之黏弹特性_第4页
软骨之黏弹特性_第5页
已阅读5页,还剩86页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

12.1IntroductionBoneworksinsmallstrainrange,biologysensitivetostrain(stress)Anisotropic,stress-strain&strain-displacementarelinearCartilagerelatedtobone(calcifiedcartilage);smallfrictioncoefficient,Lubrication&shockabsorption,multi-phasicstructure(fluids,ions,solids)triphasictheory12.1.1AnatomyofalongboneShaft(diaphysis),expansion(metaphysis),forimmature,metaphysissurmountedbyepiphysisunitedtometaphysisviagrowthplate(epiphysealplate)Coefficientoffrictionbetweenarticulatecartilage~0.0026!Growthplate-placewherecalcificationofcartilageoccur.Formatured,epiphysesfusedwithmetaphyses

Diaphysis:hollowtube,walldensecortex(compactum)Medullaormedullarycavity:centralspace,containsbonemarrowPeriosteum:coveringexternalsurfaceoflongbone,exceptarticulationInnerlayer,activecellsenlargement&remodeling;osteogeniclayerOuterlayer,fibrouscomprisedalmostentireperiosteumOvermostofdiaphysis,periosteumistenuous&looselyattached&bloodvesselsarecapiliary;Atexpandedends,ligamentsareattchedfirmly&canconveylargesizebloodvessels;Sameatridgesalongdiaphysis.Note:mechanicalpropertiesdependonwhichpartofboneisconsidered.Table12.1:1NotescorticalregionofdiaphysisSpecimenstakenfromcompactumMicroscopicobservationCompositematerialBasicunit:Haversiansystem(osteon)ArteryorveinatcenterBloodvesselsconnectedbyVolkmann’scanals(transverse)Weight%2/3inorganicmaterial,mainlyhydroxyapatite,3Ca3(PO4)2.Ca(OH)2&smallquantityofotherionsTinycrystals200Along,area2500A2,Collagen,HAcrystalsarrangedalonglengthofcollagenfibrils.ArrangementinfibersWoven-fiberboneLamallaeinosteons:concentricLamallaeinsurface:paralleltosurface12.1.2BoneasaCompositeMaterialCollagen&hydroxyapatiteYoung’smodulusoffluorapatite~165GPaSteel200GPa,6061Aluminumalloy70GPaCollagentangentmodulus~1.24GPaYoung’smodulusofhumanfemur18GPaBone’sstrengthishigherthaneitherHAorcollagen:softercomponentpreventstiffonefrombrittlecracking,stiffcomponentpreventthesoftfromyieldingMechanicalpropertiesdependon:compositionstructureofbonegeometricshapeofcomponentsbondbetweenfibers&matrixbondsatpointsofcontactoffibersStrengthofbonecorrelateswithmassdensityofbonelooselyCorrelationcoefficientbetweenstrength&density0.40-0.42Density&strengtharenon-unifromlydistributedinfemur;density2.20-2.94;strength1.35x12.2BoneasaLivingOrganBoneisliving–bloodcirculation;transportmaterialstoandfrombone&bonecanchange,grow,removedbyresorption,(stress-dependent)Under-stressedorover-stressedbonebecomesweakened,properrangeofstressisrequired;Localstressconcentrationimposedbyimpropertighteningofscrews,nuts&boltsinbonesurgerymaycauseresorptionandresultedinloosening!Evolutionprocesshasresultedinoptimumdesignofbone:GeneralshapingtominimizestressDistributionofmaterialtoachieveminimum-weightTheoriesUniformstrengthunderaspecifiedsetofloadingconditionsTrajectoryarchitecture,putmaterialonlyinthepathsoftransmissionofforcesandleavevoidselsewhere.ExamplesofoptimumstructuredesignThin-walledsubmarinecontainertoencloseavolumeVandtoresistanexternalpressurepwhilemaintaininginternalpressureatatmospheric;Sphericalshell~lightest&mosteconomical;cylindricalshelltwiceasheavy;egg-shapeliesinbetweenMinimum-weightDesignofabeamtosupportaloadPoveraspanBendingmomentM(x),maximumbendingstresss=M(x)c/IAbeamofvariablecrosssectionwithc/IvaryingwithxinsamemannerasM(x)OptimuminsenseofeconomyofmaterialComparedifferentshapesofbeamcrosssectionLoadtrajectorydesign,upperflangecompression,lowerflangetension,compression&tensileforcesaretransmittedalongthesetrajectories.PrincipleoffunctionaladaptationPrincipleofmaximum-minimumdesignMaximumstrengthisachievedwithaminimumofconstructionalmaterialThroughhypertrophy&atrophymechanismboneadaptstolivingconditiontoachievemax-mindesignSpongybonerepresentsatrajectorystructure(Roux1895)Theoreticalconstructionof3Dtrajectorysysteminfemurmodel(Kummer1972)12.3BloodCirculationinBoneImportanceofbloodcirculationonstress-dependentchangesinbone.Bymethodsofinjection,vasculatureinbonewerestudied.VascularpatternsinbonecortexPrincipalarteryentersbonethroughdistinctforamenWithinmedullabranchesintoascending&descendingmedullaryarteries;DividedintoarteriolesthatpenetrateendostealsurfacetosupplydiaphysealcortexCartilageEpiphysealarteriesGrowthcartilageEndochondralboneEndostealbonePeriostealboneOrientationofvesselsaredifferentHemodynamicsofboneisdifficulttostudyduetosmallnessofbloodvessels&inaccessibilityfordirectobservationIndirectestimatesofbloodflowratehavebeenmadeunderassumptionthatheattransferisproportionaltobloodflow.Directmeasurementsofflow&pressureareneeded!!12.4ElasticityandStrengthofBoneBoneishard&stress-straincurvesimilartomanyengineeringmaterials.Stress-strainrelationshipofahumanfenursubjecttouniaxialtension(Fig.12.4.1)Note:dryboneisbrittle&failurestrain0.4%;wetboneiselastic&higherfailurestrain1.2%.Mechanicalpropertiesofwetcompactbonesofanimalandman(p.511)Notes:Ultimatestrength&strainincompression>valuesintensionEintensionislargerthanthatincompressioniscausedbynon-homogeneousanisotropiccompositestructureofbone.humanfemur:bendingstrength160MPa,shearstrengthintorsion54.1MPa,Modulusofelasticityintorsion3.2GPa.Strengthofbonedependsonage&sexofanimalStrengthandmodulusofelasticityofspongybonearemuchsmallerthanthoseofcompactbone.12.4.1AnisotropyofBoneAnisotropicmechanicalpropertiesofmetaphysealbone:transverseisotropicmodel物理特性非等向性(anisotropy)非等向非均質沿骨幹方向剛性最大,沿徑向剛性最小正向性材料(orthotropic),即材料特性對稱於三個平面,其材料係數共有九個ABCFLABC正向性材料構成方程式

參數:九個

12.4.2FailureCriteriaofBoneCorticalbone:vonMises’syieldcriterionTrabecularbone:Mises&Hoffman’syieldcriterions1,s2,s3:principalstresses;St,Sc:ultimatestrengthsintension&compression;IfSt=Sc

thenitreducedtovonMisescriterion;Overestimateunderhydrostaticcompression12.5ViscoelasticPropertiesofBonePhysicalprocessescontributedtoviscoelasticityofbone(Lake,Katz&Sternstein1979)Thermo-elasticcouplingPiezoelectriccouplingMotionoffluidincanalsInhomogeneousdeformationinosteonsCementlines,lamellae,interstitium&fibersMolecularmodesincollagenTrianglespectrumforwetcorticalboneNotes:therelaxationwasnotnormalizedHissumofseveraltermsproportionaltologtNonlinearityinviscoelasticityofboneUsingtheQLVmodelinsec.7.6,elasticstressisnonlinearfunctionofstrainbutmemory(relaxationfunction)islinearMulti-integralmethodofGreen&RivlinMulti-integralmethodofPipkin&Rogers骨生長模型s(massrate)(stress)bcaa:Stableequilibriumpointb,c:unstableAtadm/dt=0Ds>0dm/dt>0(增骨)Ds<0dm/dt<0(減骨)骨生長模型(續)[Y.C.Fung]Notes(1)Stresshasdifferenteffects:growthinhealingprocess,modelinginoverload,remodelinginunderload.(2)growthofboneisalsoinfluencedbyheredity(3)typeofloadinginfluencebonemodeling/remodeling12.6FunctionalAdaptationofBoneX-raymeasurementofopacityofbone~mineralcontentofboneWavetransmissionvelocity&vibrationmodestodeterminedensityofboneChangesofboneduetoactionofbonecellsOsteoclasts–resorptionOsteoblast-appositionLivingboneschangeaccordingtostress&strainactinginthemExternalorsurfaceremodeling(shape)Internalremodeling(porosity,mineralcontents,opacity,density)Stress-controlledbonedevelopmentCompressivestressstimulatesformationofnewboneandimportantfactorinfracturehealingDuringimmobilization,netlossofbonecalcium&phosphorous;afterresumeofnormalactivityminerallossphenomenareversed!Astronautssubjectedtoweightlessnesshassameresults:subnormalstressescauseslossofbonestrength,radiographicopacity&size.Intermittentstressisamorphogeneticstimulustofunctionaladaptationofbone&effectofcompressivestressissameastensilestress!Distributionofmaterial&strengthisrelatedtoseverityofstressinnormalactivity.Rigidplatefixationindogyieldsthinningoffemoraldiaphysiscortexratherthanosteoporosisincortex!骨破損後在修補過程有把骨整直的傾向,凸出部的骨會被吸收,凹部的骨會增生Frost(1964)提出骨質增生與切面方向應變及受負荷後骨表面曲率有關。若表面凸度增加→減骨作用。若表面凸度減少→生骨作用

骨之增骨或減骨的要因

(1)應變模式(strainmode)(2)應變方向(straindirection)(3)應變率(strainrate)(4)應變變動頻率(strainfrequency)(5)應變分佈(straindistribution)(6)應變能(strainenergy)壓應變主導增骨作用(osteoblastic),骨細胞會依主應力方向排列(principaldirection)增骨主要由於間斷性負荷所致,固定的靜負荷再加上動態負荷促使骨生長,應變變動頻率影響生長。

Wolff’sLaw外減骨或面減骨(surfaceremodeling):即骨外形之改變

內減骨(internalremodeling):即骨內多孔度(porosity),密度的改變

活骨會隨其承受之應力及應變而改變又分:內減骨模型

假設骨由骨細胞,胞外液體及骨基質(bonematrix)即胞外固體構成ξ:基質之體積比率(volumefraction):為基質之密度,εij為應變張量σij為應力張量Atconstanttemperature

外減骨模型

hx1x3x2設x3沿著法線方向,x1、x2與骨面平行ε11,ε12,ε22為沿x1-x2平面之應變

U為沿x3方向骨厚度變化率12.6.1TensorialWolff’slawCowinetal.suggestedthattemporalchangesinarchitectureofbonemustbenonlineartensorequationstoaccountforthefeedbackbetweenstressandgrowth.SeeEqs.(5)-(8)p.517.12.6.2MechanismforcontrolofremodelingPiezoelectricityMechanismforbonetosensestress&causeremodelingCollagenElectricalfieldiscapableofactivatingprotein-synthesizingorganellesinosteogeniccells(frog).Electricalfieldcausetropocollagenalignment.BiochemicalactivityofcalciumStrainingboneincreasescalciumconcentrationininterstitialfluidChangeinsolubilityofHAcrystalsinresponsetostressEndocrineSTH(somatotropicorgrowthhormone):increasescelldivision&allsubsidiaryprocesses(totalproteinsynthesis,netproteinsynthesis,totalturnover,tissuegrowth)ACH(adrenal-corticalhormone):decreasescelldivision&subsidiaryprocesses.T4(thyroxine):affectsalltissues.Estrogens:selectivelydecreasecelldivision&subsidiaryprocesses;affectcartilage&lamellarbone.VitaminsA,C&D&calcitoninImportanceofmechanicalaspectsIfweknowthemechanicalaspectwell,thenonecancontrolboneremodelingthroughmechanicalstressthatappliedthroughexerciseeithervoluntarilyorwiththehelpofmechanicaldevices.(orthopedics)12.6.3OsseointegrationinskeletalreconstructionBranemark1977titaniumfixturestosupportfixeddentalprostheses;long-termsuccessrateofstableusefulprostheses95%25yr!Titaniumscrewfixturesappliedtohead,neck,eyeandear,hearingaids,hand,knee;boneintegratedwithtitaniumwell.12.7CartilageCompositionCells(chondrocyte)IntercellularmatrixSystemoffibersEarlyfetallife:greaterpartofskeletoniscartilaginousAdultlife:articulatingsurfaceofsynovialjoints,wallsofthoraxmlarynx,trachea,brobchi,nose,ears,smallmassesinskullbase.TypesofcartilagesHyalinecartilageCostal,nasal,tracheo-bronchialandalltemporarycartilages,mostarticularcartilageSplit-linefeature,patternofsplit-linefollowspredominantdirectionofcollagenbundles;proportionofcollageninmatrixincreaseswithageWhitefibrocartilageIntervertebraldisks,articulardisks,liningofbonygroovesthatlodgetendonsYellowelasticfibrocartilageExternalears,larynx,epiglottis,apicesofarytenoidsFunctionsInter-vertebraldiskElastic&makespineflexibleCartilageatendsofribsDesiredmobilityofribcageArticularcartilageatendsoflongbonesLubricationforsurfaceofjoints,shockabsorberBrochiolesofmananddivinganimalsCartilageisbiologicallyactive,rheologicallyunique12.8ViscoelasticPropertiesofArticularCartilageCartilageisporous&interstitiumfilledwithfluid;understressfluidmovesinandoutoftissue&mechanicalpropertieschangewithfluidmovement.InsituIndentationtestInstantaneousrecoveryfollowedbyatime-dependentrecovery;notcompleteinairbutcompleteinabathbyfluidresorptionduringunloadingTestingofarticularcartilageBovinehumeralhead;largejointsurface1.25cmdiameterplug,diecutting,slice250-325um;specimendimension1x4.25x0.25-0.325mmStrainratedependentandcyclictests(compression)FaststressrelaxationwasobservedStressresponseofbovinefemuralarticularcartilageSalinesolution,37degCl=1.07~1.1010UniaxialtensilestressrelaxationQLVmodel(Woo)RelaxationfunctionKt1=0.006,t2=8.38,C=2.02Experimentalreducedrelaxationfunction(Woo,1979)AssumeSetobeapowerseriesinEn=2,a1=30,a2=56Comparisonofexperimentaldataonstressresponsetofirst3cyclesCompressiontestofcartilageplug(Mow1977)RapidstressrelaxationEaseofextrusionoffluidintissueRamp-stepstrainDynamicstraindistributionFluidmovement3-2關節軟骨(ArticularCartilage)

3-2-1基本名詞:

軟骨細胞(chondrocyte)蛋白澱粉(proteoglycans)膠原(collagen)3-2-2研究史

1898Hultkrantz

股骨髁面軟骨,發現表面細縫,沿著關節面方向相對運動1925Benninghoff

提出arcadetheory說明軟骨深層結構1960microscope,SEM(scanningelectronmicroscope)

關節面膠原纖維潮記軟骨下骨arcade3-2-3形態學與組織學

形態與功能:

軟骨為薄的纖維結締組織,通常在滑液關節之關節面上。由軟骨細胞及胞間基質所組成,其中軟骨細胞佔5%,胞間基質佔95%,其中65~80%為水軟骨之機械性質為黏彈性。其特點為低摩擦,係數約0.0025金屬與金屬之乾摩擦係數約0.15~0.25,濕摩擦約0.1,鋼與冰之摩擦係數約0.03,濕摩擦約0.015。

主要功能

(1)傳遞力量(2)分佈力量(3)使關節以最低磨擦運動軟骨基質胞間基質(intercellularmatrix),基質(matrix)為組織中細胞間的物質,結構由基質發展而成三種基質:細胞周質(pericellular),胞區質(territorial)及胞區間質(interterritorial)等三種。

細胞周質完全包住軟骨細胞,含有少量的膠質(collagen),及蛋白澱粉。(proteoglycan

胞區質(territorial)包圍細胞周質,含有纖細狀膠質並黏附於其上,形成巢狀組織以保護軟骨細胞。

胞區間質(interterritorial)在胞區質的外面,由分布較開,厚的平行膠質纖維所組成

軟骨結構

異質(heterogeneous)依深度可分

(1)表層區(superficialzone)厚度10~20%,由細的膠質纖維排列,且排列面與關節面平行(2)轉變區(transitionzone)厚度40~60%,纖維間空間變大,纖維方向任意排列。(3)深區(deepzone)厚度30%,纖維之方向與潮記垂直

(4)鈣化區(calcifiedzone)

表層區

表層區佔厚度10~20%,由細的膠質纖維排列,且排列面與關節面平行。轉變區,約佔厚度40~60%,纖維間空間變大,纖維方向任意排列。深區(厚度30%),纖維之方向與潮記垂直。

3-2-4組織學

固體基質(solidmatrix)約佔重量20~40%,由60%的膠原纖維(collagenfiberII),纖維間的蛋白澱粉膠(proteoglycangel)

組成,蛋白澱粉具高親水,其他部分是水(60~80%)軟骨之生物力學行為由其成分之分佈以及成分間的相互作用決定。

膠原(collagen)

膠原是蛋白質的一種,具高度結構組織,基本單位是轉膠原(tropocollagen)分子,先排列成微纖維(filament)直徑4n

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论