工程基础力学 Ⅱ 动力学 课件 Chapter 7 Theorem of Moment、Chapter 8 Theorem of Kinetic Energy_第1页
工程基础力学 Ⅱ 动力学 课件 Chapter 7 Theorem of Moment、Chapter 8 Theorem of Kinetic Energy_第2页
工程基础力学 Ⅱ 动力学 课件 Chapter 7 Theorem of Moment、Chapter 8 Theorem of Kinetic Energy_第3页
工程基础力学 Ⅱ 动力学 课件 Chapter 7 Theorem of Moment、Chapter 8 Theorem of Kinetic Energy_第4页
工程基础力学 Ⅱ 动力学 课件 Chapter 7 Theorem of Moment、Chapter 8 Theorem of Kinetic Energy_第5页
已阅读5页,还剩108页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

Chapter7TheoremofMomentofMomentumMainContents§7.1Momentofmomentumofaparticleandasystemofparticles§7.2Momentofinertiaofarigidbodywithrespecttotheaxis§7.3Momentofmomentumtheorem§7.4Differentialequationsfortherotationofarigidbodyaroundafixed-axis§7.5Momentofmomentumtheoremforasystemwithrespecttoitscenterofmass§7.6Differentialequationsofplanemotionofarigidbody1.Forexamplewhenasymmetricalcircularwheelrotatesaroundaunmovingcenterofmass,nomatterhowfasttheroundwheelrotates,nomatterwhatchangestherotatingstatehave,itsmomentumisalwaysequaltozero,somomentumcannotcharacterizeormeasurethemotion.2.Theoremofmomentumandtheoremofmotionofthecenterofmassdiscussedtherelationshipbetweenprincipalvectoroftheexternalforcesystemandthemotionchangeofasystemofparticles,butdidnotdiscusstheinfluenceoftheprincipalmomentoftheexternalforcesystemonthemotionchangeofthesystemofparticles.MomentofmomentumtheoremTheoremofmomentumdescribedinthepreviouschaptercannotcompletelydescribethemotionstateofasystemofparticles.Therefore,wemusthavenewconcepttodescribethesimilarmotion.Momentofmomentumtheoremisthetheoryofthedescriptionofparticlesrelativetoapoint(orafixedaxis)orthecenterofmassmotion.Assumingaparticleinaninstanthasthemomentum

,thepositionoftheparticlerelativetopointisrespectedthroughpositionvector,asshowninfigure.§7.1Momentofmomentumofaparticleandasystemofparticles1.Momentofmomentumofaparticle

Themomentofmomentumofaparticleaboutpointisdefinedasthe“moment”oftheparticle’smomentumaboutpoint,thatisEstablisharectangularcoordinatesystembyafixedpointastheorigin,thecoordinateofaparticleis,thentheanalysisofprojectiontypeofthepositionvectorandthevelocityoftheparticleare:ThemomentofmomentumofaparticlewithrespecttoapointOcanbewrittenasadeterminantform:

Themomentofmomentumofaparticlewithrespecttoafixedpointisavector,

thevectorisperpendiculartotheplaneformedbythepositionvectorandthevelocity,itsmagnitudeisequaltotheareaofparallelogramcomposedofthepositionvectorandthemomentum,itssenseisgovernedbytheright-handrule,

andthemomentofmomentumoftheparticlewithrespecttoafixedpointisanpositioningvector,whichshouldbedrawnonthecenterofmomentO.§7.1MomentofmomentumofaparticleandasystemofparticlesThemomentofmomentumofaparticlewithrespecttothepointOisprojectedtotherectangularcoordinateaxis,

accordingtotherelationshipbetweenthemomentofthevectoraboutthepointandthemomentabouttheaxisthroughthepointweknown,

momentsofmomentumoftheparticleabouteachcoordinateaxisthroughthepointOarerespectively:ThatisTheprojectionofmomentofmomentumaboutafixedpointinanyaxisthroughthepointisequaltomomentofmomentumabouttheaxis.Momentofmomentumaboutanaxisisanalgebraicquantity,theregulationofitssymbolisthesameastheregulationofthesymbolofmomentofforceaboutanaxis,afterprovidingthepositiveoftheaxis,bytheright-handruletodeterminethepositivedirection.TheunitofmomentofmomentuminSIunitsis

or§7.1Momentofmomentumofaparticleandasystemofparticles§7.1Momentofmomentumofaparticleandasystemofparticles2.MomentofmomentumofasystemofparticlesAndthereisThevectorsumofmomentofmomentumofalltheparticlesinasystemaboutpointiscalledthemomentofmomentumofthesystemofparticlesaboutthepoint,thatisThescalarsumofmomentofmomentumofallparticlesinasystemaboutanyaxisiscalledthemomentofmomentumofthesystemofparticlesabouttheaxis.Theprojectionofmomentofmomentumofasystemofparticlesaboutpointintherectangularcoordinateaxisthroughthepointisthemomentofmomentumofthesystemofparticlesabouttheaxisthroughthepoint:wheredenotesthemomentummomentoftheithparticleinthesystemforthepointO.3.Calculationofmomentofmomentumofseveralkindsofrigidbody(1)momentofmomentumofarigidbodyintranslationalmotionwithrespecttoafixedpointCalculationofmomentofmomentumofarigidbodyintranslationalmotionissimilartocalculationformulaofmomentofmomentumofaparticle,whenwecalculatemomentofmomentumofarigidbodyintranslationalmotion,therigidbodycanberegardedasaparticle,whichhasthewholemassoftherigidbodyintranslationalmotion,locatedinthecenterofmassoftherigidbody,andmovingwiththecenterofmassoftherigidbody.§7.1Momentofmomentumofaparticleandasystemofparticles3.Calculationofmomentofmomentumofseveralkindsofrigidbody(2)momentofmomentumofarigidbodyinfixed-axisrotationwithrespecttotheaxisofrotation:

Themomentofmomentumoftheentirerigidbodytothez-axisisMomentofmomentumofarigidbodyinfixed-axisrotationwithrespecttotheaxisofrotationisequaltotheproductofthemassmomentofinertiaoftherigidbodyabouttheaxisanditstheangularvelocity.Lettherigidbodyrotatearoundafixedaxiswithangularvelocity.Themassofthethmassontherigidbodyis,thedistancefromthemasstothez-axisis,andthevelocityofthemassiswhere,

isdefinedasthemassmomentofinertiaoftherigidbodyaboutthez-axis.§7.1Momentofmomentumofaparticleandasystemofparticles§7.2Momentofinertiaofarigidbodywithrespecttoanaxis1.Conceptofthemassmomentofinertia(1)definition:thesumoftheproductofeachparticlemassofabodyandthesquareofeachparticletoanaxisdistanceiscalledthemassmomentofinertiaoftherigidbodyabouttheaxis.Forarigidbodyofcontinuousmassdistribution,then(2)Calculationofthemassmomentofinertiaofsimpleshapedbody(a)ahomogeneousslenderrodAssuminglineardensityofarodis,

consideringmicro-segment,thenthemassofthemicro-segmentis,

thusthemassmomentofinertiaoftherodaboutz-axisisMassoftherodis,

then(b)homogeneousthincircularringAssumingmassofacircularringis,thedistancebetweenmassandthecentralaxisisequaltoradius,thusthemassmomentofinertiaofthecircularringaboutthecentralaxisis(c)ahomogeneousdiskAssumingradiusofthediskis,

massis,Thecircularplateisdividedintoaninfinitenumberofconcentricthinrings,theradiusofanyringisandthewidthis.Themassofthethinringiswhere,isthemassperunitareaofthehomogeneouscircularplate,sotherotationalinertiaofthecircularplatetothecentralaxisis§7.2Momentofinertiaofarigidbodywithrespecttoanaxis(d)homogeneousrectangularplate2.RadiusofgyrationRadiusofgyrationisdefinedasthus3.Theparallel-axistheoremTheorem:themassmomentofinertiaofarigidbodywithrespecttoanyaxisisequaltothemassmomentofinertiaoftherigidbodywithrespecttoaparallelaxisthroughthemasscenterofthebodyplustheproductofthemassofthebodyandthesquareofthedistancebetweenthetwoaxes.Thatis§7.2Momentofinertiaofarigidbodywithrespecttoanaxis§7.2MomentofinertiaofarigidbodywithrespecttoanaxisExample

7-1Figureshowsahomogeneousslenderrodofmassandlength.Determinethemassmomentofinertiaoftherodabouttheaxisthatpassesthoughthemasscenterandisperpendiculartotherodaxis.Solution:themassmomentofinertiaofthehomogeneousslenderrodaboutthez-axisthatpassesthroughitsleftendandisperpendiculartotherodaxisisUsingtheparallel-axistheorem,themassmomentofinertiaabouttheaxisisOCExample

7-2Thependulumissimplifiedasfollows.Weknownmassofhomogeneousslenderrodisandmassofhomogeneousdiskis,lengthofrodis,diameterofdiskis.Determinethemassmomentofinertiaofthependulumaboutthehorizontalaxisthatpassesthroughthesuspensionpoint.Solution:themassmomentofinertiaofthependulumaboutthehorizontalaxisOiswhereAssumingisthemassmomentofinertiaofthediskaboutthecenterC,then

Thus

§7.2MomentofinertiaofarigidbodywithrespecttoanaxisThefirstderivativeofmomentofmomentumwithrespecttotime1.MomentofmomentumtheoremofaparticleAssumingmomentofmomentumofaparticleaboutafixedpointis,themomentoftheforceaboutthesamepointis,asshowninfigureAccordingtotheoremofmomentumofaparticleandHencetheaboveequationbecomessinceHenceweobtain§7.3MomentofmomentumtheoremMomentofmomentumofaparticle:thefirstderivativeofmomentofmomentumofaparticleaboutafixedpointwithrespecttotimeisequaltothemomentaboutthesamepointoftheresultantforceactingontheparticle.Makingaprojectionoftheaboveequationontherectangularcoordinateaxiswhichtakesthecenterofmomentfortheorigin,andnotingtheprojectionofthemomentofmomentumandforceaboutapointonanaxisisequaltomomentofmomentumandforceabouttheaxis,weobtain:2.MomentofmomentumtheoremofasystemofparticlesWeassumeasystemofparticlesthatisaclosedsystemofparticles,thearbitraryithparticleissubjectedtoaresultantinternalforceandaresultantexternalforceaccordingtomomentofmomentumofaparticleweobtain§7.3MomentofmomentumtheoremTherearensameequations,addedtogetherSincetheinternalforcesoccurinequalbutoppositecollinear,thefirsttermontherightsideoftheaboveequationTheleftsideoftheaboveequationhence§7.3MomentofmomentumtheoremMomentofmomentumtheoremofasystemofparticles:thetime–derivativeofmomentofmomentumofasystemofparticlesaboutafixedpointisequaltothevectorsumofthemomentsoftheexternalforcesactingonthesystemaboutthesamepoint.TheprojectionformulaisItmustbepointedoutthat,theabovetheoremofmomentofmomentumexpressionformisonlyapplicabletoafixedpointorafixedaxis.Forageneralmovingpointormovingaxis,thetheoremofmomentofmomentumhasmorecomplicatedexpressions.3.Conservationlawofmomentofmomentum(1)Ifthemomentoftheforceactingontheparticleaboutafixedpointiszero,themomentofmomentumoftheparticleaboutthepointisconstant,thatis(2)Ifthemomentoftheforceactingontheparticleaboutafixedaxisiszero,themomentofmomentumoftheparticleabouttheaxisisconstant,thatis§7.3MomentofmomentumtheoremExample

7-3Asthepictureshows,asmoothballofmassmisplacedinsideafixedcirculartubeofradiusR.Theballisgivenaninitialsmallperturbation,anddeterminethelawofmotionofthesmallball.§7.3MomentofmomentumtheoremSolution:Thetrajectoryoftheballisaknowncirculararc,sothenaturalmethodcanbeusedtodescribethemotionoftheball.Thevelocityoftheballisalwaysalongthetangentdirectionofthearc,soitissuitabletoapplythemomentummomenttheoremtosolvetheproblem.First,thesmallballischosenastheobjectofstudy.TheballisplacedinageneralpositionofmotionwiththeforceofgravitymgandthereactionforceNofthetube,withthedirectionofpointingtothecenterO.ApplyingthemomentummomenttheoremaboutpointO(i.e.,abouttheaxispassingthroughpointOandperpendiculartotheplaneofthecirculartube),wehaveorExample

7-3§7.3MomentofmomentumtheoremConsiderorExample

7-3Substitutingtheaboveequation,yieldsThisisthedifferentialequationofmotionoftheball.Thelawofmotionoftheballisdescribedbythevariableθ.Consideringthatθissmallwhensmallmoving,sosinθ≈θ,andthentheequationcanbesimplifiedasItcanbeseenthattheballdoessimpleharmonicmotion.Thearbitraryconstantsθandαintheequationcanbedeterminedbytheinitialconditionsofmotion.TheSolutionofthisdifferentialequationis§7.3MomentofmomentumtheoremMExample

7-4Windlassofblastfurnacewhichtransportsore,showninfigure.TheradiusofdrumisR,themassism1,thedrumrotatesaboutaxisO.Thetotalmassofthecarandtheoreism2.ThemomentofcoupleactingonthedrumisM,themassmomentofinertiaofthedrumabouttherotatingaxisisJ,dipangleofthetrackisθ.Neglectthemassoftheropeandvariousfriction,determinetheacceleration

aofthecar.§7.3MomentofmomentumtheoremExample

7-4§7.3MomentofmomentumtheoremMSolution:consideringthesystemofboththecarandthedrum,consideringthecarasaparticle.Clockwiseispositive.Themomentofmomentumofasystemofparticlesaboutaxisisand

,ThemomentoftheexternalforceofthesystemisTheexternalforcesactingonthesystemofparticlesincludecouple,gravity;reactionforceofbearingand

constraintforceoftrackactingonthecar.Themomentofforceaboutaxisiszero.Decomposeintoandalongthetrackandvertically,andoffseteachother.since

,we

obtainExample

7-4ApplyingmomentofmomentumofasystemofparticlesaboutaxisO,wehaveIf,then,theaccelerationofthecarupalongtheslope.§7.3MomentofmomentumtheoremMOA

Example

7-5Trytousemomentofmomentumtheoremtoderivethedifferentialequationofmotionofsimplependulum(mathematicalpendulum).§7.3MomentofmomentumtheoremOA

,Example

7-5Solution:consideringthependulumasaparticleAmovingin

thearc,themassofthependulumism,thelengthofthecycloidisl.AssuminginanytransienttheparticleAhavethevelocityv

,theangleofthecycloid

OAandtheplumbline

is

.Choosethefixedaxis

zwhichisthroughsuspensionpointOandperpendiculartotheplaneofmotion

asmomentaxis,applyingmomentofmomentumtheoremofaparticleabouttheaxis.SincemomentofmomentumandmomentofforceareThusweobtainSimplyit,weobtaindifferentialequationofmotionofthependulum.§7.3MomentofmomentumtheoremzaallABzaaθθllABExample

7-6SmallballAandBare

connectedtothestring.Themassofeveryballism,neglecttheothercomponentmassandfriction,thesystemrotatesfreelyaroundaxisz,theinitialangularvelocityofthesystemisω0.Whenthestringisbroken,theangleofeachbarandtheplumblineisθ,determinetheangularvelocityω

ofthesystem.§7.3MomentofmomentumtheoremzaallABzaaθθllABExample

7-6Solution:themomentsofthegravityactingonthesystemandreactionforceofbearingabouttherotatingaxisarezero,soconservationofmomentofmomentumofthesystemabouttheaxis.Whenθ=0,momentofmomentumWhenθ≠0,momentofmomentumBecauseLz1=Lz2,weobtain§7.3MomentofmomentumtheoremorororAssumingtheforcesactingonarigidbodywhichrotatesaroundafixed-axisincludetheactiveforcesand

thereactionforcesofbearingshowninfigure,theseforcesareallexternalforces.Themassmomentofinertiaoftherigidbodyabouttheaxisis,theangularvelocityis,momentofmomentumaboutaxisis.Ifneglectfrictionofbearing,momentsofreactionforcesofbearingaboutaxisarezero,accordingtomomentofmomentumtheoremofthesystemofparticlesaboutaxiswehaveTheaboveequationsarecalleddifferentialequationsfortherotationofarigidbodyaroundafixed-axis.§7.4Differentialequationsfortherotationofarigidbodyaroundafixed-axisExample

7-7Themagnitudeofthemassmomentofinertiaoftherigidbodyshowswhetheritisdifficultoreasyfortherotationalstateofarigidbodytobechanged,thatis:themassmomentofinertiaisameasureofarigidbody’sinertiaconcerningitsrotationalmotion.RαOShowninfigure,weknowntheradiusofpulleyisR,themassmomentofinertiaisJ,belttensionswhichdrivepulleyareF1andF2.Determinetheangularaccelerationofpulleyα

.§7.4Differentialequationsfortherotationofarigidbodyaroundafixed-axisExample

7-7RαOSolution:accordingtodifferentialequationsforrotationofarigidbodyaroundafixed-axiswehavehence

Fromtheaboveequationwesee,onlywhenthefixedpulleyrotatesataconstantspeedor(includingstatic)ataunconstantspeed,butneglectingthemassmomentofinertiaofthepulley,belttensionwhichcrossthefixedpulleyisequal.§7.4Differentialequationsfortherotationofarigidbodyaroundafixed-axisOCbExample

7-8Compoundpendulumcomposesofarigidbodyrotatingaroundthehorizontalaxis.Weknownthemassofcompoundpendulumism,thedistancebetweencenterofgravityCandtherotatingaxisOisOC=b,themassmomentofinertiaofcompoundpendulumabouttherotatingaxisOisJO.WhenswingingstartstheslipanglebetweenOCand

theplumb

lineis

0,andinitialangularvelocityofcompoundpendulumiszero,determinetheslightswinglawofcompoundpendulum.Neglectbearingfrictionandairresistance.§7.4Differentialequationsfortherotationofarigidbodyaroundafixed-axisOCbF1F2mgExample

7-8Solution:forceasshowninfigure.Assumingangleinthecounterclockwisedirectionispositive.Whensmallangleispositive,themomentofgravityaboutpointisnegative.Accordingtodifferentialequationsfortherotationofarigidbodyaroundafixed-axiswehavehenceWhencompoundpendulumswingsslightly,makingsin

.Thenafterlinearizingtheaboveequation,weobtaindifferentialequationofcompoundpendulumwhichswingsslightly.Thisisthestandarddifferentialequationofsimpleharmonicmotion.Wecanseemicro-amplitudevibrationofcompoundpendulumisalsosimpleharmonicmotion.§7.4Differentialequationsfortherotationofarigidbodyaroundafixed-axisExample

7-8OCbF1F2mgConsideringtheinitialconditionsofthemotionofcompoundpendulum:whent=0ThenmotionlawofcompoundpendulumcanbewrittenasSwingingfrequencyω0

andperiodTisrespectivelyUsingtherelationship(b)wecandeterminethemassmomentofinertiaoftherigidbody.Therefore,weputtherigidbodyintoacompoundpendulumandmeasureitsperiodTofswingbyusingtest,thenusingequation(b)wedeterminethemassmomentofinertia§7.4Differentialequationsfortherotationofarigidbodyaroundafixed-axisMomentofmomentumtheoremexpressedaboveisonlyapplicabletofixedpointorfixedaxisintheinertiareferencesystem,thenwhencenterofmomentmoves,howtoapplymomentofmomentumtheorem?Furtherstudiesshowedthat,undercertainconditions,theformofmomentofmomentumtheoremremainsthesame.Oneofthemostimportantcaseis:inthetranslationalcoordinatesystemmovingwiththecenterofmass,takingcenterofmassascenterofmoment,thentheformofmomentofmomentumtheoremremainsthesame.Takingmass

centerCastheorigin,amovingreferencesystemshowninfigure.Inthemovingreferencesystem,therelativeradiusvectorofanymassis,

relativevelocityis.§7.5MomentofmomentumtheoremforasystemwithrespecttoitscenterofmassMomentofmomentumofthesystemwithrespecttothemasscenterCisInfact,momentofmomentumofthesystemaboutthemasscentercalculatedthroughtherelativevelocityoftheparticleorthoughtheabsolutevelocitytheresultisequal,

thatisThepositionvectorofaparticle,aboutfixedpointOis,

theabsolutevelocityis,

thenmomentofmomentumofthesystemaboutfixedpointOisThefigureshows§7.5MomentofmomentumtheoremforasystemwithrespecttoitscenterofmassThusAccordingtotheoremofcompositionofvelocities,wehaveBycalculationformulaofmomentumofasystemofparticlesWheremis

thetotalmassofthesystem,

isvelocityofthemasscenterC.Substitutingtheabovetwoequations,momentofmomentumofthesystemaboutfixedpointOcanbewrittenasThelasttermofaboveequationis,

accordingtotheformulaofmasscentercoordinateispositionvectorofmasscenterCaboutmovingsystem.Cistheoriginofthemovingsystem,

obviously,

thatis,

thenthemiddletermofaboveequationiszero,

and

§7.5MomentofmomentumtheoremforasystemwithrespecttoitscenterofmassTheaboveequationshows,momentofmomentumofasystemofparticlesaboutanypointOisequaltomomentofmomentumwhichfocusesonmasscenterofthesystemaboutpointOplusmomentofmomentumofthesystemaboutmasscenterC.(vectorsum)MomentofmomentumtheoremforasystemofparticlesaboutfixedpointOcanbewrittenasExpandingtheaboveequationinbrackets,

notingtherightside,thustheaboveequationcanbewrittenasthus

Thentheaboveequationbecomes§7.5MomentofmomentumtheoremforasystemwithrespecttoitscenterofmassTherightsideofaboveequationistheprincipalmomentofexternalforceaboutcenterofmass.ThenweobtainThefirstorderderivativeabouttimeofmomentofmomentumofasystemofparticlesaboutmasscenterisequaltotheprincipalmomentofexternalforceactingonthesystemofparticlesaboutmasscenter.Thatismomentofmomentumtheoremforasystemwithrespecttoitscenterofmass.Thetheoremintheformisthesameasmomentofmomentumofasystemofparticleswithrespecttofixedpoint.§7.5Momentofmomentumtheoremforasystemwithrespecttoitscenterofmass§7.6DifferentialequationsofplanemotionofarigidbodyThepositionofrigidbodyinplanemotioncanbedeterminedbypositionofthebasepointandrotationangleofrigidbodyaroundbasepoint.ChoosemasscenterCasbasepoint,

showninfigure,itsordinatesare.AssumingDisanypointontherigidbody,

theangleofCDandx-axisis,thenpositionofrigidbodycanbedeterminedbyand.Motionofrigidbodyisdecomposedintotranslationwiththemasscenterandrotationaroundthemasscenter.ShowninfigureistranslationreferencesystemfixedtomasscenterC,

themotionofrigidbodyinplanemotionwithrespecttothemovingsystemisrotationaroundmasscenterC,

thenmomentofmomentumofrigidbodyaboutmasscenterisisthemassmomentofinertiaofarigidbodywithrespecttoanaxiswhichpassesthroughthecenterofmassandisverticaltothemotionplane,

istheangularvelocity.Assumingtheexternalforcesactingontherigidbodycanbesimplifiedasaplaneforcesystemtothemovingplaneofthemasscenter,

thenapplyingtheoremofmotionofthecenterofmassandmomentofmomentumtheoremwithrespecttothecenterofmass,weobtainisthemassofrigidbody,

isaccelerationofthemasscenter,

isangularvelocityoftherigidbody.TheaboveequationcanbewrittenasTheabovetwoequationsarecalleddifferentialequationsofplanemotionofrigidbody.§7.6DifferentialequationsofplanemotionofarigidbodyThisistheprojectionexpressionofthedifferentialequationofplanemotionofarigidbodyinarectangularcoordinatesystem.§7.6DifferentialequationsofplanemotionofarigidbodyMCrxExample

7-9Ahomogeneousroundwheelofradiusrandmassmrollsalongahorizontalline,showninfigure.AssumingradiusofgyrationofwheelisρC,momentofcoupleactingonthewheelisM.Determinetheaccelerationofthecenterofwheel.Assumingthecoefficientofthestaticslidingfrictionofthewheelonthegroundisfs,whatconditionsmustmomentofcoupleMmeet,thewheeldoesn’tslide?§7.6DifferentialequationsofplanemotionofarigidbodyaC=

rαMCrxαExample

7-9Solution:accordingtodifferentialequationsofplanemotionofarigidbody,wecanwritethefollowingthreeequations:Mandαinaclockwisedirectionispositive.sinceaCy=0,thenaCx=aC.Accordingtotheconditionofroundwheelrollingwithoutsliding,wehave§7.6DifferentialequationsofplanemotionofarigidbodyExample

7-9Simultaneoussolution,weobtain:Inordertomakeroundwheelfromstaticrollswithoutsliding,theremustbeF≤fsFN,orF≤fsmg.Thenweobtaintheconditionofroundwheelrollingwithoutsliding§7.6DifferentialequationsofplanemotionofarigidbodyMCrxαRθCExample

7-10Afterahomogeneousroundwheelofradiusrandmassmsubjectedtoaslightdisturbance,itrollsbackandforthinacirculararcofradiusR,showninfigure.Assumingthesurfaceisroughenough,roundwheelrollswithoutsliding.DeterminethelawofmotionofthemasscenterC.§7.6Differentialequationsofplanemotionofarigidbody(b)(c)(a)Example

7-10RθCr(+)αSolution

:roundwheelmakeplanemotiononthesurface,theexternalforcesincludegravity

mg,thenormalreactionforceofthearcsurfaceFNandfrictionF.

Assumingangleθinacounterclockwisedirectionispositive,takingthetan

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论