2023-2024学年河南省周口市第十八初级中学中考四模数学试题含解析_第1页
2023-2024学年河南省周口市第十八初级中学中考四模数学试题含解析_第2页
2023-2024学年河南省周口市第十八初级中学中考四模数学试题含解析_第3页
2023-2024学年河南省周口市第十八初级中学中考四模数学试题含解析_第4页
2023-2024学年河南省周口市第十八初级中学中考四模数学试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年河南省周口市第十八初级中学中考四模数学试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.有15位同学参加歌咏比赛,所得的分数互不相同,取得分前8位同学进入决赛.某同学知道自己的分数后,要判断自己能否进入决赛,他只需知道这15位同学的()A.平均数 B.中位数 C.众数 D.方差2.如图图形中,可以看作中心对称图形的是()A. B. C. D.3.二次函数y=ax2+bx+c(a≠0)的图象如图,下列结论正确的是()A.a<0 B.b2-4ac<0 C.当-1<x<3时,y>0 D.-=14.如图,直线m∥n,直角三角板ABC的顶点A在直线m上,则∠α的余角等于()A.19° B.38° C.42° D.52°5.下列各数:1.414,,﹣,0,其中是无理数的为()A.1.414 B. C.﹣ D.06.下列调查中适宜采用抽样方式的是()A.了解某班每个学生家庭用电数量B.调查你所在学校数学教师的年龄状况C.调查神舟飞船各零件的质量D.调查一批显像管的使用寿命7.2017年,全国参加汉语考试的人数约为6500000,将6500000用科学记数法表示为()A.6.5×105B.6.5×106C.6.5×107D.65×1058.小亮家1月至10月的用电量统计如图所示,这组数据的众数和中位数分别是()A.30和20B.30和25C.30和22.5D.30和17.59.a的倒数是3,则a的值是()A. B.﹣ C.3 D.﹣310.已知点M、N在以AB为直径的圆O上,∠MON=x°,∠MAN=y°,则点(x,y)一定在()A.抛物线上 B.过原点的直线上 C.双曲线上 D.以上说法都不对二、填空题(共7小题,每小题3分,满分21分)11.如果正比例函数的图像经过第一、三象限,那么的取值范围是__.12.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是_______.13.如图,在矩形ABCD中,对角线BD的长为1,点P是线段BD上的一点,联结CP,将△BCP沿着直线CP翻折,若点B落在边AD上的点E处,且EP//AB,则AB的长等于________.14.观察下列图形,若第1个图形中阴影部分的面积为1,第2个图形中阴影部分的面积为,第3个图形中阴影部分的面积为,第4个图形中阴影部分的面积为,…则第n个图形中阴影部分的面积为_____.(用字母n表示)15.正八边形的中心角为______度.16.如图所示,平行四边形ABCD中,E、F是对角线BD上两点,连接AE、AF、CE、CF,添加__________条件,可以判定四边形AECF是平行四边形.(填一个符合要求的条件即可)17.如图,在△ABC中,DE∥BC,若AD=1,DB=2,则的值为_________.三、解答题(共7小题,满分69分)18.(10分)在△ABC中,AB=AC,以AB为直径的⊙O交AC于点E,交BC于点D,P为AC延长线上一点,且∠PBC=∠BAC,连接DE,BE.(1)求证:BP是⊙O的切线;(2)若sin∠PBC=,AB=10,求BP的长.19.(5分)对于平面上两点A,B,给出如下定义:以点A或B为圆心,AB长为半径的圆称为点A,B的“确定圆”.如图为点A,B的“确定圆”的示意图.(1)已知点A的坐标为(-1,0),点B的坐标为(3,3),则点A,B的“确定圆”的面积为______;(2)已知点A的坐标为(0,0),若直线y=x+b上只存在一个点B,使得点A,B的“确定圆”的面积为9π,求点B的坐标;(3)已知点A在以P(m,0)为圆心,以1为半径的圆上,点B在直线上,若要使所有点A,B的“确定圆”的面积都不小于9π,直接写出m的取值范围.20.(8分)已知PA与⊙O相切于点A,B、C是⊙O上的两点(1)如图①,PB与⊙O相切于点B,AC是⊙O的直径若∠BAC=25°;求∠P的大小(2)如图②,PB与⊙O相交于点D,且PD=DB,若∠ACB=90°,求∠P的大小21.(10分)如图,已知点E,F分别是▱ABCD的对角线BD所在直线上的两点,BF=DE,连接AE,CF,求证:CF=AE,CF∥AE.22.(10分)求不等式组的整数解.23.(12分)为倡导“低碳生活”,人们常选择以自行车作为代步工具、图(1)所示的是一辆自行车的实物图.图(2)是这辆自行车的部分几何示意图,其中车架档AC与CD的长分别为45cm和60cm,且它们互相垂直,座杆CE的长为20cm.点A、C、E在同一条直线上,且∠CAB=75°.(参考数据:sin75°=0.966,cos75°=0.259,tan75°=3.732)(1)求车架档AD的长;(2)求车座点E到车架档AB的距离(结果精确到1cm).24.(14分)如图,AB∥CD,△EFG的顶点F,G分别落在直线AB,CD上,GE交AB于点H,GE平分∠FGD.若∠EFG=90°,∠E=35°,求∠EFB的度数.

参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】

由中位数的概念,即最中间一个或两个数据的平均数;可知15人成绩的中位数是第8名的成绩.根据题意可得:参赛选手要想知道自己是否能进入前8名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【详解】解:由于15个人中,第8名的成绩是中位数,故小方同学知道了自己的分数后,想知道自己能否进入决赛,还需知道这十五位同学的分数的中位数.故选B.【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、众数的意义.反映数据集中程度的统计量有平均数、中位数、众数等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.2、D【解析】

根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心进行分析即可.【详解】解:A、不是中心对称图形,故此选项不合题意;B、不是中心对称图形,故此选项不合题意;C、不是中心对称图形,故此选项不合题意;D、是中心对称图形,故此选项符合题意;故选D.【点睛】此题主要考查了中心对称图形,关键掌握中心对称图形定义.3、D【解析】试题分析:根据二次函数的图象和性质进行判断即可.解:∵抛物线开口向上,∴∴A选项错误,∵抛物线与x轴有两个交点,∴∴B选项错误,由图象可知,当-1<x<3时,y<0∴C选项错误,由抛物线的轴对称性及与x轴的两个交点分别为(-1,0)和(3,0)可知对称轴为即-=1,∴D选项正确,故选D.4、D【解析】试题分析:过C作CD∥直线m,∵m∥n,∴CD∥m∥n,∴∠DCA=∠FAC=52°,∠α=∠DCB,∵∠ACB=90°,∴∠α=90°﹣52°=38°,则∠a的余角是52°.故选D.考点:平行线的性质;余角和补角.5、B【解析】试题分析:根据无理数的定义可得是无理数.故答案选B.考点:无理数的定义.6、D【解析】

根据全面调查与抽样调查的特点对各选项进行判断.【详解】解:了解某班每个学生家庭用电数量可采用全面调查;调查你所在学校数学教师的年龄状况可采用全面调查;调查神舟飞船各零件的质量要采用全面调查;而调查一批显像管的使用寿命要采用抽样调查.故选:D.【点睛】本题考查了全面调查与抽样调查:全面调查与抽样调查的优缺点:全面调查收集的到数据全面、准确,但一般花费多、耗时长,而且某些调查不宜用全面调查.抽样调查具有花费少、省时的特点,但抽取的样本是否具有代表性,直接关系到对总体估计的准确程度.7、B【解析】

科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】将6500000用科学记数法表示为:6.5×106.故答案选B.【点睛】本题考查了科学计数法,解题的关键是熟练的掌握科学计数法的表示形式.8、C【解析】

将折线统计图中的数据从小到大重新排列后,根据中位数和众数的定义求解可得.【详解】将这10个数据从小到大重新排列为:10、15、15、20、20、25、25、30、30、30,所以该组数据的众数为30、中位数为20+252故选:C.【点睛】此题考查了众数与中位数,众数是一组数据中出现次数最多的数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.9、A【解析】

根据倒数的定义进行解答即可.【详解】∵a的倒数是3,∴3a=1,解得:a=.故选A.【点睛】本题考查的是倒数的定义,即乘积为1的两个数叫互为倒数.10、B【解析】

由圆周角定理得出∠MON与∠MAN的关系,从而得出x与y的关系式,进而可得出答案.【详解】∵∠MON与∠MAN分别是弧MN所对的圆心角与圆周角,∴∠MAN=∠MON,∴,∴点(x,y)一定在过原点的直线上.故选B.【点睛】本题考查了圆周角定理及正比例函数图像的性质,熟练掌握圆周角定理是解答本题的关键.二、填空题(共7小题,每小题3分,满分21分)11、k>1【解析】

根据正比例函数y=(k-1)x的图象经过第一、三象限得出k的取值范围即可.【详解】因为正比例函数y=(k-1)x的图象经过第一、三象限,所以k-1>0,解得:k>1,故答案为:k>1.【点睛】此题考查一次函数问题,关键是根据正比例函数y=(k-1)x的图象经过第一、三象限解答.12、【解析】

首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次都摸到白球的情况,再利用概率公式即可求得答案.【详解】画树状图得:

∵共有12种等可能的结果,两次都摸到白球的有2种情况,

∴两次都摸到白球的概率是:=.

故答案为:.【点睛】本题考查用树状图法求概率,解题的关键是掌握用树状图法求概率.13、【解析】

设CD=AB=a,利用勾股定理可得到Rt△CDE中,DE2=CE2-CD2=1-2a2,Rt△DEP中,DE2=PD2-PE2=1-2PE,进而得出PE=a2,再根据△DEP∽△DAB,即可得到,即,可得,即可得到AB的长等于.【详解】如图,设CD=AB=a,则BC2=BD2-CD2=1-a2,

由折叠可得,CE=BC,BP=EP,

∴CE2=1-a2,

∴Rt△CDE中,DE2=CE2-CD2=1-2a2,

∵PE∥AB,∠A=90°,

∴∠PED=90°,

∴Rt△DEP中,DE2=PD2-PE2=(1-PE)2-PE2=1-2PE,

∴PE=a2,

∵PE∥AB,

∴△DEP∽△DAB,

∴,即,

∴,

即a2+a-1=0,

解得(舍去),

∴AB的长等于AB=.故答案为.14、n﹣1(n为整数)【解析】试题分析:观察图形可得,第1个图形中阴影部分的面积=()0=1;第2个图形中阴影部分的面积=()1=;第3个图形中阴影部分的面积=()2=;第4个图形中阴影部分的面积=()3=;…根据此规律可得第n个图形中阴影部分的面积=()n-1(n为整数)•考点:图形规律探究题.15、45°【解析】

运用正n边形的中心角的计算公式计算即可.【详解】解:由正n边形的中心角的计算公式可得其中心角为,故答案为45°.【点睛】本题考查了正n边形中心角的计算.16、BE=DF【解析】可以添加的条件有BE=DF等;证明:∵四边形ABCD是平行四边形,∴AB=CD,∠ABD=∠CDB;又∵BE=DF,∴△ABE≌△CDF(SAS).∴AE=CF,∠AEB=∠CFD.

∴∠AEF=∠CFE.∴AE∥CF;∴四边形AECF是平行四边形.(一组对边平行且相等的四边形是平行四边形)故答案为BE=DF.17、【解析】DE∥BC即三、解答题(共7小题,满分69分)18、(1)证明见解析;(2)【解析】

(1)连接AD,求出∠PBC=∠ABC,求出∠ABP=90°,根据切线的判定得出即可;(2)解直角三角形求出BD,求出BC,根据勾股定理求出AD,根据相似三角形的判定和性质求出BE,根据相似三角形的性质和判定求出BP即可.【详解】解:(1)连接AD,∵AB是⊙O的直径,∴∠ADB=90°,∴AD⊥BC,∵AB=AC,∴AD平分∠BAC,∴∠BAD=∠BAC,∵∠ADB=90°,∴∠BAD+∠ABD=90°,∵∠PBC=∠BAC,∴∠PBC+∠ABD=90°,∴∠ABP=90°,即AB⊥BP,∴PB是⊙O的切线;(2)∵∠PBC=∠BAD,∴sin∠PBC=sin∠BAD,∵sin∠PBC==,AB=10,∴BD=2,由勾股定理得:AD==4,∴BC=2BD=4,∵由三角形面积公式得:AD×BC=BE×AC,∴4×4=BE×10,∴BE=8,∴在Rt△ABE中,由勾股定理得:AE=6,∵∠BAE=∠BAP,∠AEB=∠ABP=90°,∴△ABE∽△APB,∴=,∴PB===.【点睛】本题考查了切线的判定、圆周角定理、勾股定理、解直角三角形、相似三角形的性质和判定等知识点,能综合运用性质定理进行推理是解此题的关键.19、(1)25π;(2)点B的坐标为或;(3)m≤-5或m≥2【解析】

(1)根据勾股定理,可得AB的长,根据圆的面积公式,可得答案;(2)根据确定圆,可得l与⊙A相切,根据圆的面积,可得AB的长为3,根据等腰直角三角形的性质,可得,可得答案;(3)根据圆心与直线垂直时圆心到直线的距离最短,根据确定圆的面积,可得PB的长,再根据30°的直角边等于斜边的一半,可得CA的长.【详解】(1)(1)∵A的坐标为(−1,0),B的坐标为(3,3),∴AB==5,根据题意得点A,B的“确定圆”半径为5,∴S圆=π×52=25π.故答案为25π;(2)∵直线y=x+b上只存在一个点B,使得点A,B的“确定圆”的面积为9π,∴⊙A的半径AB=3且直线y=x+b与⊙A相切于点B,如图,∴AB⊥CD,∠DCA=45°.,①当b>0时,则点B在第二象限.过点B作BE⊥x轴于点E,∵在Rt△BEA中,∠BAE=45°,AB=3,∴.∴.②当b<0时,则点B'在第四象限.同理可得.综上所述,点B的坐标为或.(3)如图2,,直线当y=0时,x=3,即C(3,0).∵tan∠BCP=,∴∠BCP=30°,∴PC=2PB.P到直线的距离最小是PB=4,∴PC=1.3-1=-5,P1(-5,0),3+1=2,P(2,0),当m≤-5或m≥2时,PD的距离大于或等于4,点A,B的“确定圆”的面积都不小于9π.点A,B的“确定圆”的面积都不小于9π,m的范围是m≤-5或m≥2.【点睛】本题考查了一次函数综合题,解(1)的关键是利用勾股定理得出AB的长;解(2)的关键是等腰直角三角形的性质得出;解(3)的关键是利用30°的直角边等于斜边的一半得出PC=2PB.20、(1)∠P=50°;(2)∠P=45°.【解析】

(1)连接OB,根据切线长定理得到PA=PB,∠PAO=∠PBO=90°,根据三角形内角和定理计算即可;

(2)连接AB、AD,根据圆周角定理得到∠ADB=90°,根据切线的性质得到AB⊥PA,根据等腰直角三角形的性质解答.【详解】解:(1)如图①,连接OB.∵PA、PB与⊙O相切于A、B点,∴PA=PB,∴∠PAO=∠PBO=90°∴∠PAB=∠PBA,∵∠BAC=25°,∴∠PBA=∠PAB=90°一∠BAC=65°∴∠P=180°-∠PAB-∠PBA=50°;(2)如图②,连接AB、AD,∵∠ACB=90°,∴AB是的直径,∠ADB=90·∵PD=DB,∴PA=AB.∵PA与⊙O相切于A点∴AB⊥PA,∴∠P=∠ABP=45°.【点睛】本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于过切点的半径是解题的关键.21、证明见

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论