2022-2023学年河南省驻马店市上蔡县九年级数学第一学期期末联考模拟试题含解析_第1页
2022-2023学年河南省驻马店市上蔡县九年级数学第一学期期末联考模拟试题含解析_第2页
2022-2023学年河南省驻马店市上蔡县九年级数学第一学期期末联考模拟试题含解析_第3页
2022-2023学年河南省驻马店市上蔡县九年级数学第一学期期末联考模拟试题含解析_第4页
2022-2023学年河南省驻马店市上蔡县九年级数学第一学期期末联考模拟试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,路灯距离地面8米,身高1.6米的小明站在距离灯的底部(点0)20米的A处,则小明的影长为()米.A.4 B.5 C.6 D.72.如图,在菱形ABCD中,点E,F分别在AB,CD上,且,连接EF交BD于点O连接AO.若,,则的度数为()A.50° B.55° C.65° D.75°3.下列图形中,既是轴对称图形,又是中心对称图形的是()A.正三角形 B.正五边形 C.正六边形 D.正七边形4.如图,正比例函数与反比例函数的图象交于、两点,其中,则不等式的解集为()A. B.C.或 D.或5.在圆内接四边形中,与的比为,则的度数为()A. B. C. D.6.点在反比例函数y=的图象上,则k的值是()A.1 B.3 C.﹣1 D.﹣37.如图,点、、是上的点,,连结交于点,若,则的度数为()A. B. C. D.8.如图,点A、B、C是⊙O上的三点,∠BAC=40°,则∠OBC的度数是()A.80° B.40° C.50° D.20°9.将抛物线y=2x2向左平移1个单位,再向上平移3个单位得到的抛物线,其解析式是()A.y=2(x+1)2+3 B.y=2(x-1)2-3C.y=2(x+1)2-3 D.y=2(x-1)2+310.在学校组织的实践活动中,小新同学用纸板制作了一个圆锥模型,它的底面半径为1,母线长为1.则这个圆锥的侧面积是()A.4π B.1π C.π D.2π11.如图,AB是⊙O的弦,OC⊥AB于点H,若∠AOC=60°,OH=1,则弦AB的长为()A.2 B. C.2 D.412.如图,为的直径,点为上一点,,则劣弧的长度为()A. B.C. D.二、填空题(每题4分,共24分)13.如图,的顶点都在方格纸的格点上,则_______.14.我国经典数学著作《九章算术》中有这样一道名题,就是“引葭赴岸”问题,(如图)题目是:“今有池方一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐,问水深,葭长各几何?”题意是:有一正方形池塘,边长为一丈,有棵芦苇长在它的正中央,高出水面部分有一尺长,把芦苇拉向岸边,恰好碰到岸沿,问水深和芦苇长各是多少?(小知识:1丈=10尺)如果设水深为x尺,则芦苇长用含x的代数式可表示为尺,根据题意列方程为.15.如图,某水坝的坡比为,坡长为米,则该水坝的高度为__________米.16.若一元二次方程的一个根是,则__________.17.关于x的方程(m﹣2)x2﹣2x+1=0是一元二次方程,则m满足的条件是_____.18.在△ABC中,∠C=90°,若AC=6,BC=8,则△ABC外接圆半径为________;三、解答题(共78分)19.(8分)如图,四边形内接于,是的直径,点在的延长线上,延长交的延长线于点,点是的中点,.(1)求证:是的切线;(2)求证:是等腰三角形;(3)若,,求的值及的长.20.(8分)如图1,抛物线平移后过点A(8,,0)和原点,顶点为B,对称轴与轴相交于点C,与原抛物线相交于点D.(1)求平移后抛物线的解析式并直接写出阴影部分的面积;(2)如图2,直线AB与轴相交于点P,点M为线段OA上一动点,为直角,边MN与AP相交于点N,设,试探求:①为何值时为等腰三角形;②为何值时线段PN的长度最小,最小长度是多少.21.(8分)已知,关于x的方程(m﹣1)x2+2x﹣2=0为一元二次方程,且有两个不相等的实数根,求m的取值范围.22.(10分)已知关于x的方程:(m﹣2)x2+x﹣2=0(1)若方程有实数根,求m的取值范围.(2)若方程的两实数根为x1、x2,且x12+x22=5,求m的值.23.(10分)如图,点E是矩形ABCD对角线AC上的一个动点(点E可以与点A和点C重合),连接BE.已知AB=3cm,BC=4cm.设A、E两点间的距离为xcm,BE的长度为ycm.某同学根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行探究.下面是该同学的探究过程,请补充完整:(1)通过取点、画图、测量及分析,得到了x与y的几组值,如下表:说明:补全表格时相关数值保留一位小数)(2)建立平面直角坐标系,描出已补全后的表中各对对应值为坐标的点,画出该函数的图象.(3)结合画出的函数图象,解决问题:当BE=2AE时,AE的长度约为cm.(结果保留一位小数)24.(10分)定义:连结菱形的一边中点与对边的两端点的线段把它分成三个三角形,如果其中有两个三角形相似,那么称这样的菱形为自相似菱形.(1)判断下列命题是真命题,还是假命题?①正方形是自相似菱形;②有一个内角为60°的菱形是自相似菱形.③如图1,若菱形ABCD是自相似菱形,∠ABC=α(0°<α<90°),E为BC中点,则在△ABE,△AED,△EDC中,相似的三角形只有△ABE与△AED.(2)如图2,菱形ABCD是自相似菱形,∠ABC是锐角,边长为4,E为BC中点.①求AE,DE的长;②AC,BD交于点O,求tan∠DBC的值.25.(12分)如图,一栋居民楼AB的高为16米,远处有一栋商务楼CD,小明在居民楼的楼底A处测得商务楼顶D处的仰角为60°,又在商务楼的楼顶D处测得居民楼的楼顶B处的俯角为45°.其中A、C两点分别位于B、D两点的正下方,且A、C两点在同一水平线上,求商务楼CD的高度.(参考数据:≈1.414,≈1.1.结果精确到0.1米)26.如图,在Rt△ABC中,∠BAC=90°,BD是角平分线,以点D为圆心,DA为半径的⊙D与AC相交于点E.(1)求证:BC是⊙D的切线;(2)若AB=5,BC=13,求CE的长.

参考答案一、选择题(每题4分,共48分)1、B【分析】直接利用相似三角形的性质得出,故,进而得出AM的长即可得出答案.【详解】解:由题意可得:OC∥AB,则△MBA∽△MCO,∴,即解得:AM=1.故选:B.【点睛】此题主要考查了相似三角形的应用,根据题意得出△MBA∽△MCO是解题关键.2、C【分析】由菱形的性质以及已知条件可证明△BOE≌△DOF,然后根据全等三角形的性质可得BO=DO,即O为BD的中点,进而可得AO⊥BD,再由∠ODA=∠DBC=25°,即可求出∠OAD的度数.【详解】∵四边形ABCD为菱形∴AB=BC=CD=DA,AB∥CD,AD∥BC∴∠ODA=∠DBC=25°,∠OBE=∠ODF,又∵AE=CF∴BE=DF在△BOE和△DOF中,∴△BOE≌△DOF(AAS)∴OB=OD即O为BD的中点,又∵AB=AD∴AO⊥BD∴∠AOD=90°∴∠OAD=90°-∠ODA=65°故选C.【点睛】本题考查了菱形的性质,全等三角形的判定与性质,以及等腰三角形三线合一的性质,熟练掌握菱形的性质,得出全等三角形的判定条件是解题的关键.3、C【分析】根据轴对称图形与中心对称图形的概念求解即可.【详解】A、此图形不是中心对称图形,是轴对称图形,故此选项错误;

B、此图形不是中心对称图形,是轴对称图形,故此选项错误;

C、此图形既是中心对称图形,又是轴对称图形,故此选项正确;

D、此图形不是中心对称图形,是轴对称图形,故此选项错误.

故选:C.【点睛】本题主要考查了轴对称图形与中心对称图形,掌握好中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4、D【分析】由题意可求点B坐标,根据图象可求解.【详解】解:∵正比例函数y=x与反比例函数的图象交于A、B两点,其中A(2,2),

∴点B坐标为(-2,-2)

∴由图可知,当x>2或-2<x<0,正比例函数图象在反比例函数的图象的上方,即不等式的解集为x>2或-2<x<0

故选:D.【点睛】本题考查了反比例函数与一次函数的交点问题,熟练掌握函数图象的性质是解决.5、C【分析】根据圆内接四边形对角互补的性质即可求得.【详解】∵在圆内接四边形ABCD中,:=3:2,∴∠B:∠D=3:2,∵∠B+∠D=180°,∴∠B=180°×=.故选C.【点睛】本题考查了圆内接四边形的性质,熟练掌握圆内接四边形的性质是解题的关键.6、B【解析】把P(﹣1,k)代入函数解析式即可求k的值.【详解】把点P(﹣1,k)代入y=得到:k==1.故选:B.【点睛】本题考查了反比例函数图象上点的坐标特征,图象上的点的坐标适合解析式是解题的关键.7、B【分析】根据平行可得,∠A=∠O,据圆周角定理可得,∠C=∠O,结合外角的性质得出∠ADB=∠C+∠A=60°,可求出结果.【详解】解:∵OB∥AC,∠A=∠O,又∠C=∠O,∴∠ADB=∠C+∠A=∠O+∠O=60°,∴∠O=40°.故选:B.【点睛】本题主要考查圆周角定理、平行线的性质以及外角的性质,熟练掌握同弧所对的圆周角等于圆心角的一半是解题的关键.8、C【解析】∵∠BOC=2∠BAC,∠BAC=40°∴∠BOC=80°,∵OB=OC,∴∠OBC=∠OCB=(180°-80°)÷2=50°故选C.9、A【分析】抛物线平移不改变a的值.【详解】原抛物线的顶点为(0,0),向左平移1个单位,再向上平移1个单位,那么新抛物线的顶点为(-1,1).可设新抛物线的解析式为y=2(x-h)2+k,代入得:y=2(x+1)2+1.

故选:A.10、B【分析】根据圆锥的侧面积,代入数进行计算即可.【详解】解:圆锥的侧面积2π×1×1=1π.故选:B.【点睛】本题主要考查了圆锥的计算,掌握圆锥的计算是解题的关键.11、A【分析】在Rt△AOH中,由∠AOC=60°,解直角三角形求得AH=,然后利用垂径定理解答即可.【详解】解:∵OC⊥AB于H,∴AH=BH,在Rt△AOH中,∠AOC=60°,OH=1,∴AH=OH=,∴AB=2AH=2故选:A.【点睛】本题考查了垂径定理以及解直角三角形,难度不大,掌握相关性质定理是解题关键.12、A【分析】根据“直径所对圆周角为90°”可知为直角三角形,在可求出∠BAC的正弦值,从而得到∠BAC的度数,再根据圆周角定理可求得所对圆心角的度数,最后利用弧长公式即可求解.【详解】∵AB为直径,AO=4,∴∠ACB=90°,AB=8,在中,AB=8,BC=,∴sin∠BAC=,∵sin60°=,∴∠BAC=60°,∴所对圆心角的度数为120°,∴的长度=.故选:A.【点睛】本题考查弧长的计算,明确圆周角定理,锐角三角函数及弧长公式是解题关键,注意弧长公式中的角度指的是圆心角而不是圆周角.二、填空题(每题4分,共24分)13、【分析】如下图,先构造出直角三角形,然后根据sinA的定义求解即可.【详解】如下图,过点C作AB的垂线,交AB延长线于点D设网格中每一小格的长度为1则CD=1,AD=3∴在Rt△ACD中,AC=∴sinA=故答案为:.【点睛】本题考查锐角三角函数的求解,解题关键是构造出直角三角形ACD.14、(x+1);.【解析】试题分析:设水深为x尺,则芦苇长用含x的代数式可表示为(x+1)尺,根据题意列方程为.故答案为(x+1),.考点:由实际问题抽象出一元二次方程;勾股定理的应用.15、【分析】根据坡度的定义,可得,从而得∠A=30°,进而即可求解.【详解】∵水坝的坡比为,∠C=90°,∴,即:tan∠A=∴∠A=30°,∵为米,∴为1米.故答案是:1.【点睛】本题主要考查坡度的定义和三角函数的定义,掌握坡度的定义,是解题的关键.16、1【分析】将x=1代入一元二次方程,即可求得m的值,本题得以解决.【详解】解:∵一元二次方程有一个根为x=1,

∴11-6+m=0,

解得,m=1,

故答案为1.【点睛】本题考查一元二次方程的解,解答本题的关键是明确题意,求出m的值.17、【分析】根据一元二次方程的定义ax2+bx+c=0(a≠0),列含m的不等式求解即可.【详解】解:∵关于x的方程(m﹣2)x2﹣2x+1=0是一元二次方程,∴m-2≠0,∴m≠2.故答案为:m≠2.【点睛】本题考查了一元二次方程的概念,满足二次项系数不为0是解答此题的关键.18、5【分析】先确定外接圆的半径是AB,圆心在AB的中点,再计算AB的长,由此求出外接圆的半径为5.【详解】∵在△ABC中,∠C=90°,∴△ABC外接圆直径为斜边AB、圆心是AB的中点,∵∠C=90°,AC=6,BC=8,∴,∴△ABC外接圆半径为5.故答案为:5.【点睛】此题考查勾股定理的运用、三角形外接圆的确定.根据圆周角定理,直角三角形的直角所对的边为直径,即可确定圆的位置及大小.三、解答题(共78分)19、(1)见解析;(2)见解析;(3),【分析】(1)根据圆的切线的定义来证明,证∠OCD=90°即可;(2)根据全等三角形的性质和四边形的内接圆的外角性质来证;(3)根据已知条件先证△CDB∽△ADC,由相似三角形的对应边成比例,求CB的值,然后求求的值;连结BE,在Rt△FEB和Rt△AEB中,利用勾股定理来求EF即可.【详解】解:(1)如图1,连结,是的直径,,又点是的中点,.,又是的切线图1(2)四边形内接于,.,即是等腰三角形(3)如图2,连结,设,,在中,,由(1)可知,又,在中,,,是的直径,,即解得图2【点睛】本题考查了圆的切线、相似三角形的性质、勾股定理的应用,解本题关键是找对应的线段长.20、(1)平移后抛物线的解析式,=12;(2)①,②当=3时,PN取最小值为.【分析】(1)设平移后抛物线的解析式y=x2+bx,将点A(8,0)代入,根据待定系数法即可求得平移后抛物线的解析式,再根据割补法由三角形面积公式即可求解;(2)作NQ垂直于x轴于点Q,①分当MN=AN时,当AM=AN时,当MN=MA时,三种情况讨论可得△MAN为等腰三角形时t的值;②由MN所在直线方程为y=,与直线AB的解析式y=﹣x+6联立,得xN的最小值为6,此时t=3,PN取最小值为.【详解】(1)设平移后抛物线的解析式,将点A(8,,0)代入,得=,所以顶点B(4,3),所以S阴影=OC•CB=12;(2)设直线AB解析式为y=mx+n,将A(8,0)、B(4,3)分别代入得,解得:,所以直线AB的解析式为,作NQ垂直于x轴于点Q,①当MN=AN时,N点的横坐标为,纵坐标为,由三角形NQM和三角形MOP相似可知,得,解得(舍去).当AM=AN时,AN=,由三角形ANQ和三角形APO相似可知,,MQ=,由三角形NQM和三角形MOP相似可知得:,解得:t=12(舍去);当MN=MA时,故是钝角,显然不成立,故;②由MN所在直线方程为y=,与直线AB的解析式y=﹣x+6联立,得点N的横坐标为XN=,即t2﹣xNt+36﹣xN=0,由判别式△=x2N﹣4(36﹣)≥0,得xN≥6或xN≤﹣14,又因为0<xN<8,所以xN的最小值为6,此时t=3,当t=3时,N的坐标为(6,),此时PN取最小值为.【点睛】本题考查了二次函数综合题,涉及的知识点有:待定系数法求抛物线的解析式,平移的性质,割补法,三角形面积,分类思想,相似三角形的性质,勾股定理,根的判别式,综合性较强,有一定的难度,熟练掌握相关知识是解题的关键.21、且【分析】由题意根据判别式的意义得到=22﹣4(m﹣1)×(﹣2)>0,然后解不等式即可.【详解】解:根据题意得=22﹣4(m﹣1)×(﹣2)>0且m﹣1≠0,解得且m≠1,故m的取值范围是且m≠1.【点睛】本题考查一元二次方程的定义以及一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.22、(1)m≥;(2)m=3【分析】(1)根据判别式即可求出答案;(2)根据根与系数的关系即可求出答案.【详解】解:(1)当m﹣2≠0时,△=1+8(m﹣2)≥0,∴m≥且m≠2,当m﹣2=0时,x﹣2=0,符合题意,综上所述,m≥(2)由根与系数的关系可知:x1+x2=,x1x2=,∵x12+x22=5,∴(x1+x2)2﹣2x1x2=5,∴+=5,∴=1或=﹣5,∴m=3或m=(舍去).【点睛】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的解法,本题属于基础题型.23、解:(1)2.5;(2)图象见解析;(3)1.2(1.1—1.3均可)【分析】(1)根据画图测量即可;(2)按照(1)中数据描点画图即可;(3)当BE=2AE时,即y=2x时,画出图形观察图像即可得到值.【详解】解:(1)根据测量可得:2.5;(2)根据数据描点画图,即可画图象(3)当BE=2AE时,即y=2x时,如图,y=2x与原函数图像的交点M的横坐标即为所求,可得AE≈1.2(1.1—1.3均可).【点睛】本题为动点问题的函数图象探究题,解答时用到了数形结合和转化的数学思想.24、(1)见解析;(2)①AE=2,DE=4;②tan∠DBC=.【分析】(1)①证明△ABE≌△DCE(SAS),得出△ABE∽△DCE即可;②连接AC,由自相似菱形的定义即可得出结论;③由自相似菱形的性质即可得出结论;(2)①由(1)③得△ABE∽△DEA,得出,求出AE=2,DE=4即可;②过E作EM⊥AD于M,过D作DN⊥BC于N,则四边形DMEN是矩形,得出DN=EM,DM=EN,∠M=∠N=90°,设AM=x,则EN=DM=x+4,由勾股定理得出方程,解方程求出AM=1,EN=DM=5,由勾股定理得出DN=EM==,求出BN=7,再由三角函数定义即可得出答案.【详解】解:(1)①正方形是自相似菱形,是真命题;理由如下:如图3所示:∵四边形ABCD是正方形,点E是BC的中点,∴AB=CD,BE=CE,∠ABE=∠DCE=90°,在△ABE和△DCE中,∴△ABE≌△DCE(SAS),∴△ABE∽△DCE,∴正方形是自相似菱形,故答案为:真命题;②有一个内角为60°的菱形是自相似菱形,是假命题;理由如下:如图4所示:连接AC,∵四边形ABCD是菱形,∴AB=BC=CD,AD∥BC,AB∥CD,∵∠B=60°,∴△ABC是等边三角形,∠DCE=120°,∵点E是BC的中点,∴AE⊥BC,∴∠AEB=∠DAE=90°,∴只能△AEB与△DAE相似,∵AB∥CD,∴只能∠B=∠AED,若∠AED=∠B=60°,则∠CED=180°﹣90°﹣60°=30°,∴∠CDE=180°﹣120°﹣30°=30°,∴∠CED=∠CDE,∴CD=CE,不成立,∴有一个内角为60°的菱形不是自相似菱形,故答案为:假命题;③若菱形ABCD是自相似菱形,∠ABC=α(0°<α<90°),E为BC中点,则在△ABE,△AED,△EDC中,相似的三角形只有△ABE与△AED,是真命题;理由如下:∵∠ABC=α(0°<α<90°),∴∠C>90°,且∠ABC+∠C=180°,△ABE与△EDC不能相似,同理△AED与△EDC也不能相似,∵四边形ABCD是菱形,∴AD∥BC,∴∠AEB=∠DAE,当∠AED=∠B时,△ABE∽△DEA,∴若菱形ABCD是自相似菱形,∠ABC=α(0°<α<90°),E为BC中点,则在△ABE,△AED,△EDC中,相似的三角形只有△AB

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论