高一数学同步备好课之题型全归纳(人教A版必修第一册)专题49诱导公式五和公式六(原卷版+解析)_第1页
高一数学同步备好课之题型全归纳(人教A版必修第一册)专题49诱导公式五和公式六(原卷版+解析)_第2页
高一数学同步备好课之题型全归纳(人教A版必修第一册)专题49诱导公式五和公式六(原卷版+解析)_第3页
高一数学同步备好课之题型全归纳(人教A版必修第一册)专题49诱导公式五和公式六(原卷版+解析)_第4页
高一数学同步备好课之题型全归纳(人教A版必修第一册)专题49诱导公式五和公式六(原卷版+解析)_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题49诱导公式五和公式六1.公式五(1)角eq\f(π,2)-α与角α的终边关于直线y=x对称,如图所示.(2)公式:sineq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)-α))=cosα,coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)-α))=sinα.2.公式六(1)公式五与公式六中角的联系eq\f(π,2)+α=π-eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)-α)).(2)公式:sineq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)+α))=cosα,coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)+α))=-sinα.3.诱导公式一~六中的角可归纳为k·eq\f(π,2)±α的形式,可概括为“奇变偶不变,符号看象限”.①“变”与“不变”是针对互余关系的函数而言的.②“奇”“偶”是对诱导公式k·eq\f(π,2)±α中的整数k来讲的.③“象限”指k·eq\f(π,2)±α中,将α看成锐角时,k·eq\f(π,2)±α所在的象限,根据“一全正,二正弦,三正切,四余弦”的符号规律确定原函数值的符号.4.利用诱导公式五、六,结合诱导公式二,还可以推出如下公式:sineq\b\lc\(\rc\)(\a\vs4\al\co1(\f(3π,2)-α))=-cosα,coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(3π,2)-α))=-sinα,sineq\b\lc\(\rc\)(\a\vs4\al\co1(\f(3π,2)+α))=-cosα,coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(3π,2)+α))=sinα.题型一利用诱导公式化简与求值1.下列与sinθ的值相等的是()A.sin(π+θ)B.sineq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)-θ))C.coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)-θ)) D.coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)+θ))2.化简sineq\b\lc\(\rc\)(\a\vs4\al\co1(\f(3π,2)+α))=________.3.下列各式中,不正确的是()A.sin(180°-α)=sinαB.coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(180°+α,2)))=sineq\f(α,2)C.coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(3π,2)-α))=-sinαD.tan(-α)=-tanα4.若sineq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)+θ))<0,且coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)-θ))>0,则θ是()A.第一象限角 B.第二象限角C.第三角限角 D.第四象限角5.化简sin(π+α)coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(3π,2)+α))+sineq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)+α))cos(π+α)=________.6.化简:eq\f(sin\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)-α))cos\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)+α)),cosπ+α)-eq\f(sin2π-αcos\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)-α)),sinπ-α).7.化简:eq\f(sinθ-5πcos\b\lc\(\rc\)(\a\vs4\al\co1(-\f(π,2)-θ))cos8π-θ,sin\b\lc\(\rc\)(\a\vs4\al\co1(θ-\f(3π,2)))sin-θ-4π)=()A.-sinθB.sinθC.cosθ D.-cosθ8.化简:eq\f(sin2π+αcosπ-αcos\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)-α))cos\b\lc\(\rc\)(\a\vs4\al\co1(\f(7π,2)-α)),cosπ-αsin3π-αsin-π+αsin\b\lc\(\rc\)(\a\vs4\al\co1(\f(5π,2)+α)))=________.9.化简:eq\f(cosα-π,sinπ-α)·sineq\b\lc\(\rc\)(\a\vs4\al\co1(α-\f(π,2)))coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)+α)).10.eq\f(sin2π-α·cos\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,3)+2α))cosπ-α,tanα-3πsin\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)+α))sin\b\lc\(\rc\)(\a\vs4\al\co1(\f(7π,6)-2α)))等于()A.-cosαB.cosαC.sinα D.-sinα11.化简:eq\f(sin\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)+α))cos\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)-α)),cos(π+α))+eq\f(sin(π-α)cos\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)+α)),sin(π+α)).12.已知sineq\b\lc\(\rc\)(\a\vs4\al\co1(\f(5π,2)+α))=eq\f(1,5),那么cosα=13.已知cosθ=-eq\f(3,5),则sineq\b\lc\(\rc\)(\a\vs4\al\co1(θ+\f(π,2)))=________.14.已知coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)+φ))=eq\f(\r(3),2),且|φ|<eq\f(π,2),则tanφ=________.15.如果cos(π+A)=-eq\f(1,2),那么sineq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)+A))=16.已知coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)+α))=-eq\f(3,5),且α是第二象限角,则sineq\b\lc\(\rc\)(\a\vs4\al\co1(α-\f(3π,2)))的结果是17.若cos(α+π)=-eq\f(2,3),则sin(-α-eq\f(3π,2))=18.已知cosα=eq\f(1,5),且α为第四象限角,那么coseq\b\lc\(\rc\)(\a\vs4\al\co1(α+\f(π,2)))=________.19.若sin(3π+α)=-eq\f(1,2),则coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(7π,2)-α))等于20.已知cos(π+α)=-eq\f(1,2),α为第一象限角,求coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)+α))的值.21.已知α∈eq\b\lc\(\rc\)(\a\vs4\al\co1(0,\f(3π,2))),coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(3π,2)-α))=eq\f(\r(,3),2),则tan(2018π-α)=22.已知sineq\b\lc\(\rc\)(\a\vs4\al\co1(α+\f(π,4)))=eq\f(1,3),则coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,4)-α))的值为23.已知sineq\b\lc\(\rc\)(\a\vs4\al\co1(α-\f(π,4)))=eq\f(1,3),则coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,4)+α))等于24.已知sineq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,3)-α))=eq\f(1,2),则coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,6)+α))的值为________.25.已知sineq\b\lc\(\rc\)(\a\vs4\al\co1(α+\f(π,6)))=eq\f(3,5),则coseq\b\lc\(\rc\)(\a\vs4\al\co1(α+\f(2π,3)))的值为________.26.若sineq\b\lc\(\rc\)(\a\vs4\al\co1(α+\f(π,12)))=eq\f(1,3),则coseq\b\lc\(\rc\)(\a\vs4\al\co1(α+\f(7π,12)))=________.27.已知α是第四象限角,且cos(5°+α)=eq\f(4,5),则cos(α-85°)=________.28.已知sin10°=k,则cos620°的值为()A.k B.-kC.±k D.不确定29.已知cosα=eq\f(1,3),则sineq\b\lc\(\rc\)(\a\vs4\al\co1(α-\f(π,2)))·coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(3π,2)+α))tan(π-α)=________.30.已知cos31°=m,则sin239°tan149°的值是()A.eq\f(1-m2,m)B.eq\r(1-m2)C.-eq\f(1-m2,m) D.-eq\r(1-m2)31.若sin(180°+α)+cos(90°+α)=-a,则cos(270°-α)+2sin(360°-α)的值是32.化简eq\f(sin400°sin-230°,cos850°tan-50°)的结果为________.33.若f(cosx)=cos2x,则f(sin15°)的值为34.已知f(sinx)=cos3x,则f(cos10°)的值为35.若f(sinx)=3-cos2x,则f(cosx)=()A.3-cos2xB.3-sin2xC.3+cos2x D.3+sin2x36.计算sin21°+sin22°+sin23°+…+sin289°=37.在△ABC中,eq\r(3)sineq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)-A))=3sin(π-A),且cosA=-eq\r(3)cos(π-B),则C=________.题型二利用诱导公式证明恒等式1.求证:eq\f(tan2π-αcos\b\lc\(\rc\)(\a\vs4\al\co1(\f(3π,2)-α))cos6π-α,sin\b\lc\(\rc\)(\a\vs4\al\co1(α+\f(3π,2)))cos\b\lc\(\rc\)(\a\vs4\al\co1(α+\f(3π,2))))=-tanα.2.求证:eq\f(cosπ-θ,cosθ\b\lc\[\rc\](\a\vs4\al\co1(sin\b\lc\(\rc\)(\a\vs4\al\co1(\f(3π,2)-θ))-1)))+eq\f(cos2π-θ,cosπ+θsin\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)+θ))-sin\b\lc\(\rc\)(\a\vs4\al\co1(\f(3π,2)+θ)))=eq\f(2,sin2θ).3.求证:eq\f(sinθ+cosθ,sinθ-cosθ)=eq\f(2sin\b\lc\(\rc\)(\a\vs4\al\co1(θ-\f(3π,2)))cos\b\lc\(\rc\)(\a\vs4\al\co1(θ+\f(π,2)))-1,1-2sin2π+θ).4.求证:eq\f(cos6π+θsin-2π-θtan2π-θ,cos\b\lc\(\rc\)(\a\vs4\al\co1(\f(3π,2)+θ))sin\b\lc\(\rc\)(\a\vs4\al\co1(\f(3π,2)+θ)))=-tanθ.5.求证:eq\f(cos\b\lc\(\rc\)(\a\vs4\al\co1(\f(5π,2)+x)),sin\b\lc\(\rc\)(\a\vs4\al\co1(x-\f(5π,2)))tan6π-x)=-1.6.求证:eq\f(2sin\b\lc\(\rc\)(\a\vs4\al\co1(θ-\f(3π,2)))cos\b\lc\(\rc\)(\a\vs4\al\co1(θ+\f(π,2)))-1,1-2sin2θ)=eq\f(tan9π+θ+1,tanπ+θ-1).题型三诱导公式的综合应用1.已知锐角α终边上一点P的坐标是(2sin2,-2cos2),则α等于________.2.已知f(α)=eq\f(cos\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)+α))sin\b\lc\(\rc\)(\a\vs4\al\co1(\f(3π,2)-α)),cos-π-αtanπ-α),则feq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(25,3)π))的值为________.3.已知coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,6)-α))=eq\f(1,3),求coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(5,6)π+α))·sineq\b\lc\(\rc\)(\a\vs4\al\co1(\f(2π,3)-α))的值.4.已知cos(15°+α)=eq\f(3,5),α为锐角,求eq\f(tan435°-α+sinα-165°,cos195°+α·sin105°+α)的值.5.已知角α的终边经过点Peq\b\lc\(\rc\)(\a\vs4\al\co1(\f(4,5),-\f(3,5))).(1)求sinα的值;(2)求eq\f(sin\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)-α))tanα-π,sinα+πcos3π-α)的值.6.已知tanθ=2,求eq\f(sin\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)+θ))-cosπ-θ,sin\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)-θ))-sinπ-θ)的值.7.已知tan(3π+α)=2,则eq\f(sinα-3π+cosπ-α+sin\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)-α))-2cos\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)+α)),-sin-α+cosπ+α)=________.8.已知eq\f(sinθ+cosθ,sinθ-cosθ)=2,则sin(θ-5π)sineq\b\lc\(\rc\)(\a\vs4\al\co1(\f(3,2)π-θ))=________.9.已知cosα=-eq\f(4,5),且α为第三象限角.求f(α)=eq\f(tanπ-α·sinπ-α·sin\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)-α)),cosπ+α)的值.10.已知coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)+α))=2sineq\b\lc\(\rc\)(\a\vs4\al\co1(α-\f(π,2))),则eq\f(sin(π-α)+cos(π+α),5cos\b\lc\(\rc\)(\a\vs4\al\co1(\f(5π,2)-α))+3sin\b\lc\(\rc\)(\a\vs4\al\co1(\f(7π,2)-α)))=________.11.已知sin(α-3π)=2cos(α-4π),求eq\f(sin(π-α)+5cos(2π-α),2sin(\f(3π,2)-α)-sin(-α))的值.12.已知角θ的顶点在坐标原点,始边与x轴正半轴重合,终边在直线3x-y=0上,则eq\f(sin\b\lc\(\rc\)(\a\vs4\al\co1(\f(3π,2)+θ))+2cosπ-θ,sin\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)-θ))-sinπ-θ)=________.13.已知cos(75°+α)=eq\f(1,3),则sin(α-15°)+cos(105°-α)的值是14.已知α,β∈(0,eq\f(π,2)),且α,β的终边关于直线y=x对称,若sinα=eq\f(3,5),则sinβ=15.已知角α的终边在第二象限,且与单位圆交于点P(a,eq\f(3,5)),求eq\f(sin(\f(π,2)+α)+2sin(\f(π,2)-α),2cos(\f(3π,2)-α))的值.16.已知f(α)=eq\f(tanπ-αcos2π-αsin\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)+α)),cos-α-π).(1)化简f(α);(2)若feq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)-α))=-eq\f(3,5),且α是第二象限角,求tanα.17.已知f(α)=eq\f(sinπ-αcos2π-αcos\b\lc\(\rc\)(\a\vs4\al\co1(-α+\f(3π,2))),cos\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)-α))sin-π-α).(1)化简f(α);(2)若α为第三象限角,且coseq\b\lc\(\rc\)(\a\vs4\al\co1(α-\f(3π,2)))=eq\f(1,5),求f(α)的值;(3)若α=-eq\f(31π,3),求f(α)的值.18.已知sinα是方程5x2-7x-6=0的根,α是第三象限角,求eq\f(sin\b\lc\(\rc\)(\a\vs4\al\co1(-α-\f(3,2)π))cos\b\lc\(\rc\)(\a\vs4\al\co1(\f(3,2)π-α)),cos\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)-α))sin\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)+α)))·tan2(π-α)的值.19.若sinα=eq\f(\r(5),5),求eq\f(cos3π-α,sin\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)+α))\b\lc\[\rc\](\a\vs4\al\co1(sin\b\lc\(\rc\)(\a\vs4\al\co1(\f(7π,2)+α))-1)))+eq\f(sin\b\lc\(\rc\)(\a\vs4\al\co1(\f(5π,2)-α)),cos3π+αsin\b\lc\(\rc\)(\a\vs4\al\co1(\f(5π,2)+α))-sin\b\lc\(\rc\)(\a\vs4\al\co1(\f(7π,2)+α)))的值.20.在△ABC中,sineq\f(A+B-C,2)=sineq\f(A-B+C,2),试判断△ABC的形状.21.已知sineq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(π,2)-α))·coseq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(5π,2)-α))=eq\f(60,169),且eq\f(π,4)<α<eq\f(π,2),求sinα与cosα的值.22.已知sin(π-α)-cos(π+α)=eq\f(\r(,2),3)(eq\f(π,2)<α<π),求下列各式的值.(1)sinα-cosα;(2)cos2(eq\f(π,2)+α)-cos2(-α).23.已知函数f(α)=eq\f(sin\b\lc\(\rc\)(\a\vs4\al\co1(α-\f(π,2)))cos\b\lc\(\rc\)(\a\vs4\al\co1(\f(3π,2)+α))tan(2π-α),tan(α+π)sin(α+π)).(1)化简f(α);(2)若f(α)·feq\b\lc\(\rc\)(\a\vs4\al\co1(α+\f(π,2)))=-eq\f(1,8),且eq\f(5π,4)≤α≤eq\f(3π,2),求f(α)+feq\b\lc\(\rc\)(\a\vs4\al\co1(α+\f(π,2)))的值;(3)若feq\b\lc\(\rc\)(\a\vs4\al\co1(α+\f(π,2)))=2f(α),求f(α)·feq\b\lc\(\rc\)(\a\vs4\al\co1(α+\f(π,2)))的值.24.是否存在角α,β,α∈(-eq\f(π,2),eq\f(π,2)),β∈(0,π),使等式sin(3π-α)=eq\r(2)cos(eq\f(π,2)-β),eq\r(3)cos(-α)=-eq\r(2)cos(π+β)同时成立?若存在,求出α,β的值;若不存在,请说明理由.25.已知f(cosx)=cos17x.(1)求证:f(sinx)=sin17x;(2)对于怎样的整数n,能由f(sinx)=sinnx推出f(cosx)=cosnx?专题49诱导公式五和公式六1.公式五(1)角eq\f(π,2)-α与角α的终边关于直线y=x对称,如图所示.(2)公式:sineq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)-α))=cosα,coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)-α))=sinα.2.公式六(1)公式五与公式六中角的联系eq\f(π,2)+α=π-eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)-α)).(2)公式:sineq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)+α))=cosα,coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)+α))=-sinα.3.诱导公式一~六中的角可归纳为k·eq\f(π,2)±α的形式,可概括为“奇变偶不变,符号看象限”.①“变”与“不变”是针对互余关系的函数而言的.②“奇”“偶”是对诱导公式k·eq\f(π,2)±α中的整数k来讲的.③“象限”指k·eq\f(π,2)±α中,将α看成锐角时,k·eq\f(π,2)±α所在的象限,根据“一全正,二正弦,三正切,四余弦”的符号规律确定原函数值的符号.4.利用诱导公式五、六,结合诱导公式二,还可以推出如下公式:sineq\b\lc\(\rc\)(\a\vs4\al\co1(\f(3π,2)-α))=-cosα,coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(3π,2)-α))=-sinα,sineq\b\lc\(\rc\)(\a\vs4\al\co1(\f(3π,2)+α))=-cosα,coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(3π,2)+α))=sinα.题型一利用诱导公式化简与求值1.下列与sinθ的值相等的是()A.sin(π+θ)B.sineq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)-θ))C.coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)-θ)) D.coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)+θ))[解析]sin(π+θ)=-sinθ;sineq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)-θ))=cosθ;coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)-θ))=sinθ;coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)+θ))=-sinθ.2.化简sineq\b\lc\(\rc\)(\a\vs4\al\co1(\f(3π,2)+α))=________.[解析]sineq\b\lc\(\rc\)(\a\vs4\al\co1(\f(3π,2)+α))=sineq\b\lc\(\rc\)(\a\vs4\al\co1(π+\f(π,2)+α))=-sineq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)+α))=-cosα.3.下列各式中,不正确的是()A.sin(180°-α)=sinαB.coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(180°+α,2)))=sineq\f(α,2)C.coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(3π,2)-α))=-sinαD.tan(-α)=-tanα[解析]由诱导公式知A、D正确.coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(3,2)π-α))=coseq\b\lc\(\rc\)(\a\vs4\al\co1(π+\f(π,2)-α))=-coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)-α))=-sinα,故C正确.coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(180°+α,2)))=coseq\b\lc\(\rc\)(\a\vs4\al\co1(90°+\f(α,2)))=-sineq\f(α,2),故B不正确.4.若sineq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)+θ))<0,且coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)-θ))>0,则θ是()A.第一象限角 B.第二象限角C.第三角限角 D.第四象限角[解析]由于sineq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)+θ))=cosθ<0,coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)-θ))=sinθ>0,所以角θ的终边落在第二象限,故选B.5.化简sin(π+α)coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(3π,2)+α))+sineq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)+α))cos(π+α)=________.[解析]原式=(-sinα)·sinα+cosα·(-cosα)=-sin2α-cos2α=-1.6.化简:eq\f(sin\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)-α))cos\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)+α)),cosπ+α)-eq\f(sin2π-αcos\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)-α)),sinπ-α).[解析]原式=eq\f(cosα-sinα,-cosα)-eq\f(sin-αsinα,sinα)=sinα-(-sinα)=2sinα.7.化简:eq\f(sinθ-5πcos\b\lc\(\rc\)(\a\vs4\al\co1(-\f(π,2)-θ))cos8π-θ,sin\b\lc\(\rc\)(\a\vs4\al\co1(θ-\f(3π,2)))sin-θ-4π)=()A.-sinθB.sinθC.cosθ D.-cosθ[解析]原式=eq\f(sinθ-πcos\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)+θ))cosθ,cosθsin-θ)=eq\f(-sinθ-sinθcosθ,cosθ-sinθ)=-sinθ.8.化简:eq\f(sin2π+αcosπ-αcos\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)-α))cos\b\lc\(\rc\)(\a\vs4\al\co1(\f(7π,2)-α)),cosπ-αsin3π-αsin-π+αsin\b\lc\(\rc\)(\a\vs4\al\co1(\f(5π,2)+α)))=________.[解析]原式=eq\f(sinα·-cosα·sinα·cos\b\lc\(\rc\)(\a\vs4\al\co1(\f(3π,2)-α)),-cosα·sinα·[-sinπ-α]sin\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)+α)))=eq\f(sinα·-sinα,-sinα·cosα)=tanα9.化简:eq\f(cosα-π,sinπ-α)·sineq\b\lc\(\rc\)(\a\vs4\al\co1(α-\f(π,2)))coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)+α)).[解析]原式=eq\f(cos[-π-α],sinα)·sineq\b\lc\[\rc\](\a\vs4\al\co1(-\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)-α))))(-sinα)=eq\f(cosπ-α,sinα)·eq\b\lc\[\rc\](\a\vs4\al\co1(-sin\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)-α))))(-sinα)=eq\f(-cosα,sinα)·(-cosα)(-sinα)=-cos2α.10.eq\f(sin2π-α·cos\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,3)+2α))cosπ-α,tanα-3πsin\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)+α))sin\b\lc\(\rc\)(\a\vs4\al\co1(\f(7π,6)-2α)))等于()A.-cosαB.cosαC.sinα D.-sinα[解析]原式=eq\f(sin-α·cos\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,3)+2α))·-cosα,tanα·cosα·sin\b\lc\[\rc\](\a\vs4\al\co1(\f(3,2)π-\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,3)+2α)))))=eq\f(sinαcosα·cos\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,3)+2α)),tanαcosα\b\lc\[\rc\](\a\vs4\al\co1(-cos\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,3)+2α)))))=-cosα.故选A.11.化简:eq\f(sin\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)+α))cos\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)-α)),cos(π+α))+eq\f(sin(π-α)cos\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)+α)),sin(π+α)).[解析]因为sineq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)+α))=cosα,coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)-α))=sinα,cos(π+α)=-cosα,sin(π-α)=sinα,coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)+α))=-sinα,sin(π+α)=-sinα,所以原式=eq\f(cosα·sinα,-cosα)+eq\f(sinα·(-sinα),-sinα)=-sinα+sinα=0.12.已知sineq\b\lc\(\rc\)(\a\vs4\al\co1(\f(5π,2)+α))=eq\f(1,5),那么cosα=[解析]sineq\b\lc\(\rc\)(\a\vs4\al\co1(\f(5π,2)+α))=sineq\b\lc\(\rc\)(\a\vs4\al\co1(2π+\f(π,2)+α))=sineq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)+α))=cosα=eq\f(1,5).13.已知cosθ=-eq\f(3,5),则sineq\b\lc\(\rc\)(\a\vs4\al\co1(θ+\f(π,2)))=________.[解析]sineq\b\lc\(\rc\)(\a\vs4\al\co1(θ+\f(π,2)))=cosθ=-eq\f(3,5).14.已知coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)+φ))=eq\f(\r(3),2),且|φ|<eq\f(π,2),则tanφ=________.[解析]coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)+φ))=-sinφ=eq\f(\r(3),2),sinφ=-eq\f(\r(3),2),又∵|φ|<eq\f(π,2),∴cosφ=eq\f(1,2),故tanφ=-eq\r(3).15.如果cos(π+A)=-eq\f(1,2),那么sineq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)+A))=[解析]∵cos(π+A)=-cosA=-eq\f(1,2),∴cosA=eq\f(1,2),∴sineq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)+A))=cosA=eq\f(1,2)16.已知coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)+α))=-eq\f(3,5),且α是第二象限角,则sineq\b\lc\(\rc\)(\a\vs4\al\co1(α-\f(3π,2)))的结果是[解析]∵coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)+α))=-sinα=-eq\f(3,5),∴sinα=eq\f(3,5),且α是第二象限角,∴cosα=-eq\r(1-sin2α)=-eq\f(4,5).而sineq\b\lc\(\rc\)(\a\vs4\al\co1(α-\f(3π,2)))=-sineq\b\lc\(\rc\)(\a\vs4\al\co1(\f(3π,2)-α))=-(-cosα)=cosα=-eq\f(4,5)17.若cos(α+π)=-eq\f(2,3),则sin(-α-eq\f(3π,2))=[解析]因为cos(α+π)=-cosα=-eq\f(2,3),所以cosα=eq\f(2,3).所以sineq\b\lc\(\rc\)(\a\vs4\al\co1(-α-\f(3π,2)))=cosα=eq\f(2,3).18.已知cosα=eq\f(1,5),且α为第四象限角,那么coseq\b\lc\(\rc\)(\a\vs4\al\co1(α+\f(π,2)))=________.[解析]因为cosα=eq\f(1,5),且α为第四象限角,所以sinα=-eq\r(1-cos2α)=-eq\f(2\r(6),5),所以coseq\b\lc\(\rc\)(\a\vs4\al\co1(α+\f(π,2)))=-sinα=eq\f(2\r(6),5).19.若sin(3π+α)=-eq\f(1,2),则coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(7π,2)-α))等于[解析]∵sin(3π+α)=-sinα=-eq\f(1,2),∴sinα=eq\f(1,2).∴coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(7π,2)-α))=coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(3π,2)-α))=-coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)-α))=-sinα=-eq\f(1,2).20.已知cos(π+α)=-eq\f(1,2),α为第一象限角,求coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)+α))的值.[解析]因为cos(π+α)=-cosα=-eq\f(1,2),所以cosα=eq\f(1,2),又α为第一象限角.则coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)+α))=-sinα=-eq\r(1-cos2α)=-eq\r(1-\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2)))\s\up12(2))=-eq\f(\r(3),2).21.已知α∈eq\b\lc\(\rc\)(\a\vs4\al\co1(0,\f(3π,2))),coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(3π,2)-α))=eq\f(\r(,3),2),则tan(2018π-α)=[解析]由coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(3π,2)-α))=eq\f(\r(,3),2)得sinα=-eq\f(\r(,3),2),又0<α<eq\f(3π,2),所以π<α<eq\f(3π,2),所以cosα=-eq\r(,1-\b\lc\(\rc\)(\a\vs4\al\co1(-\f(\r(,3),2)))\s\up12(2))=-eq\f(1,2),tanα=eq\r(,3).因为tan(2018π-α)=tan(-α)=-tanα=-eq\r(,3)22.已知sineq\b\lc\(\rc\)(\a\vs4\al\co1(α+\f(π,4)))=eq\f(1,3),则coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,4)-α))的值为[解析]∵coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,4)-α))=coseq\b\lc\[\rc\](\a\vs4\al\co1(\f(π,2)-\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,4)+α))))=sineq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,4)+α))=eq\f(1,3).23.已知sineq\b\lc\(\rc\)(\a\vs4\al\co1(α-\f(π,4)))=eq\f(1,3),则coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,4)+α))等于[解析]coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,4)+α))=coseq\b\lc\(\rc\)(\a\vs4\al\co1(α-\f(π,4)+\f(π,2)))=-sineq\b\lc\(\rc\)(\a\vs4\al\co1(α-\f(π,4)))=-eq\f(1,3).24.已知sineq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,3)-α))=eq\f(1,2),则coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,6)+α))的值为________.[解析]coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,6)+α))=coseq\b\lc\[\rc\](\a\vs4\al\co1(\f(π,2)-\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,3)-α))))=sineq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,3)-α))=eq\f(1,2).25.已知sineq\b\lc\(\rc\)(\a\vs4\al\co1(α+\f(π,6)))=eq\f(3,5),则coseq\b\lc\(\rc\)(\a\vs4\al\co1(α+\f(2π,3)))的值为________.[解析]coseq\b\lc\(\rc\)(\a\vs4\al\co1(α+\f(2π,3)))=coseq\b\lc\[\rc\](\a\vs4\al\co1(\f(π,2)+\b\lc\(\rc\)(\a\vs4\al\co1(α+\f(π,6)))))=-sineq\b\lc\(\rc\)(\a\vs4\al\co1(α+\f(π,6)))=-eq\f(3,5).26.若sineq\b\lc\(\rc\)(\a\vs4\al\co1(α+\f(π,12)))=eq\f(1,3),则coseq\b\lc\(\rc\)(\a\vs4\al\co1(α+\f(7π,12)))=________.[解析]coseq\b\lc\(\rc\)(\a\vs4\al\co1(α+\f(7π,12)))=coseq\b\lc\[\rc\](\a\vs4\al\co1(\f(π,2)+\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,12)+α))))=-sineq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,12)+α))=-eq\f(1,3).27.已知α是第四象限角,且cos(5°+α)=eq\f(4,5),则cos(α-85°)=________.[解析]因为α是第四象限角,且cos(5°+α)=eq\f(4,5)>0,所以5°+α是第四象限角,所以sin(5°+α)=-eq\r(1-cos25°+α)=-eq\f(3,5),所以cos(α-85°)=cos(5°+α-90°)=sin(5°+α)=-eq\f(3,5).28.已知sin10°=k,则cos620°的值为()A.k B.-kC.±k D.不确定[解析]cos620°=cos(360°+260°)=cos260°=cos(270°-10°)=-sin10°=-k.29.已知cosα=eq\f(1,3),则sineq\b\lc\(\rc\)(\a\vs4\al\co1(α-\f(π,2)))·coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(3π,2)+α))tan(π-α)=________.[解析]sineq\b\lc\(\rc\)(\a\vs4\al\co1(α-\f(π,2)))coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(3π,2)+α))tan(π-α)=-cosαsinα(-tanα)=sin2α=1-cos2α=1-eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,3)))2=eq\f(8,9).30.已知cos31°=m,则sin239°tan149°的值是()A.eq\f(1-m2,m)B.eq\r(1-m2)C.-eq\f(1-m2,m) D.-eq\r(1-m2)[解析]sin239°tan149°=sin(180°+59°)·tan(180°-31°)=-sin59°(-tan31°)=-sin(90°-31°)·(-tan31°)=-cos31°·(-tan31°)=sin31°=eq\r(1-cos231°)=eq\r(1-m2).31.若sin(180°+α)+cos(90°+α)=-a,则cos(270°-α)+2sin(360°-α)的值是[解析]由sin(180°+α)+cos(90°+α)=-a,得-sinα-sinα=-a,即sinα=eq\f(a,2),cos(270°-α)+2sin(360°-α)=-sinα-2sinα=-3sinα=-eq\f(3,2)a.32.化简eq\f(sin400°sin-230°,cos850°tan-50°)的结果为________.[解析]eq\f(sin400°sin-230°,cos850°tan-50°)=eq\f(sin360°+40°[-sin180°+50°],cos720°+90°+40°-tan50°)=eq\f(sin40°sin50°,sin40°tan50°)=eq\f(sin50°,\f(sin50°,cos50°))=cos50°.33.若f(cosx)=cos2x,则f(sin15°)的值为[解析]因为f(sin15°)=f(cos75°)=cos150°=-eq\f(\r(3),2).34.已知f(sinx)=cos3x,则f(cos10°)的值为[解析]f(cos10°)=f(sin80°)=cos240°=cos(180°+60°)=-cos60°=-eq\f(1,2).35.若f(sinx)=3-cos2x,则f(cosx)=()A.3-cos2xB.3-sin2xC.3+cos2x D.3+sin2x[解析]f(cosx)=feq\b\lc\[\rc\](\a\vs4\al\co1(sin\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)-x))))=3-cos(π-2x)=3+cos2x,故选C.36.计算sin21°+sin22°+sin23°+…+sin289°=[解析]原式=(sin21°+sin289°)+(sin22°+sin288°)+…+(sin244°+sin246°)+sin245°=44+eq\f(1,2)=eq\f(89,2).37.在△ABC中,eq\r(3)sineq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)-A))=3sin(π-A),且cosA=-eq\r(3)cos(π-B),则C=________.[解析]由题意得eq\b\lc\{\rc\(\a\vs4\al\co1(\r(3)cosA=3sinA,①,cosA=\r(3)cosB,②))由①得tanA=eq\f(\r(3),3),故A=eq\f(π,6).由②得cosB=eq\f(cos\f(π,6),\r(3))=eq\f(1,2),故B=eq\f(π,3).故C=eq\f(π,2).题型二利用诱导公式证明恒等式1.求证:eq\f(tan2π-αcos\b\lc\(\rc\)(\a\vs4\al\co1(\f(3π,2)-α))cos6π-α,sin\b\lc\(\rc\)(\a\vs4\al\co1(α+\f(3π,2)))cos\b\lc\(\rc\)(\a\vs4\al\co1(α+\f(3π,2))))=-tanα.[解析]左边=eq\f(tan2π-αcos\b\lc\(\rc\)(\a\vs4\al\co1(\f(3π,2)-α))cos6π-α,sin\b\lc\(\rc\)(\a\vs4\al\co1(α+\f(3π,2)))cos\b\lc\(\rc\)(\a\vs4\al\co1(α+\f(3π,2))))=eq\f(tan-α-sinαcosα,-cosαsinα)=eq\f(-tanαsinαcosα,cosαsinα)=-tanα=右边,所以原等式成立.2.求证:eq\f(cosπ-θ,cosθ\b\lc\[\rc\](\a\vs4\al\co1(sin\b\lc\(\rc\)(\a\vs4\al\co1(\f(3π,2)-θ))-1)))+eq\f(cos2π-θ,cosπ+θsin\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)+θ))-sin\b\lc\(\rc\)(\a\vs4\al\co1(\f(3π,2)+θ)))=eq\f(2,sin2θ).[解析]左边=eq\f(-cosθ,cosθ-cosθ-1)+eq\f(cosθ,-cosθcosθ+cosθ)=eq\f(1,1+cosθ)+eq\f(1,1-cosθ)=eq\f(1-cosθ+1+cosθ,1+cosθ1-cosθ)=eq\f(2,1-cos2θ)=eq\f(2,sin2θ)=右边.∴原式成立.3.求证:eq\f(sinθ+cosθ,sinθ-cosθ)=eq\f(2sin\b\lc\(\rc\)(\a\vs4\al\co1(θ-\f(3π,2)))cos\b\lc\(\rc\)(\a\vs4\al\co1(θ+\f(π,2)))-1,1-2sin2π+θ).[解析]右边=eq\f(-2sin\b\lc\(\rc\)(\a\vs4\al\co1(\f(3π,2)-θ))·-sinθ-1,1-2sin2θ)=eq\f(2sin\b\lc\[\rc\](\a\vs4\al\co1(π+\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)-θ))))sinθ-1,1-2sin2θ)=eq\f(-2sin\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)-θ))sinθ-1,1-2sin2θ)=eq\f(-2cosθsinθ-1,cos2θ+sin2θ-2sin2θ)=eq\f(sinθ+cosθ2,sin2θ-cos2θ)=eq\f(sinθ+cosθ,sinθ-cosθ)=左边,所以原等式成立.4.求证:eq\f(cos6π+θsin-2π-θtan2π-θ,cos\b\lc\(\rc\)(\a\vs4\al\co1(\f(3π,2)+θ))sin\b\lc\(\rc\)(\a\vs4\al\co1(\f(3π,2)+θ)))=-tanθ.[解析]左边=eq\f(cosθsin-θtan-θ,cos\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)+θ))sin\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)+θ)))=eq\f(cosθsinθtanθ,-sinθcosθ)=-tanθ=右边,所以原等式成立.5.求证:eq\f(cos\b\lc\(\rc\)(\a\vs4\al\co1(\f(5π,2)+x)),sin\b\lc\(\rc\)(\a\vs4\al\co1(x-\f(5π,2)))tan6π-x)=-1.[解析]因为eq\f(cos\b\lc\(\rc\)(\a\vs4\al\co1(\f(5π,2)+x)),sin\b\lc\(\rc\)(\a\vs4\al\co1(x-\f(5π,2)))tan6π-x)=eq\f(cos\b\lc\(\rc\)(\a\vs4\al\co1(2π+\f(π,2)+x)),sin\b\lc\(\rc\)(\a\vs4\al\co1(x-\f(π,2)-2π))tan-x)=eq\f(cos\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)+x)),-sin\b\lc\(\rc\)(\a\vs4\al\co1(x-\f(π,2)))tanx)=eq\f(-sinx,cosxtanx)=-1=右边,所以原等式成立.6.求证:eq\f(2sin\b\lc\(\rc\)(\a\vs4\al\co1(θ-\f(3π,2)))cos\b\lc\(\rc\)(\a\vs4\al\co1(θ+\f(π,2)))-1,1-2sin2θ)=eq\f(tan9π+θ+1,tanπ+θ-1).[解析]左边=eq\f(-2cosθ·sinθ-1,sin2θ+cos2θ-2sin2θ)=eq\f(-sinθ+cosθ2,cosθ+sinθcosθ-sinθ)=eq\f(sinθ+cosθ,sinθ-cosθ),右边=eq\f(tan8π+π+θ+1,tanπ+θ-1)=eq\f(tanπ+θ+1,tanπ+θ-1)=eq\f(tanθ+1,tanθ-1)=eq\f(\f(sinθ,cosθ)+1,\f(sinθ,cosθ)-1)=eq\f(sinθ+cosθ,sinθ-cosθ),所以等式成立.题型三诱导公式的综合应用1.已知锐角α终边上一点P的坐标是(2sin2,-2cos2),则α等于________.[解析]cosα=eq\f(2sin2,\r(2sin22+-2cos22))=sin2,∴α=2-eq\f(π,2).2.已知f(α)=eq\f(cos\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)+α))sin\b\lc\(\rc\)(\a\vs4\al\co1(\f(3π,2)-α)),cos-π-αtanπ-α),则feq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(25,3)π))的值为________.[解析]∵f(α)=eq\f(-sinα-cosα,-cosα-tanα)=cosα,∴feq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(25,3)π))=coseq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(25,3)π))=coseq\f(25,3)π=coseq\b\lc\(\rc\)(\a\vs4\al\co1(8π+\f(π,3)))=coseq\f(π,3)=eq\f(1,2).3.已知coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,6)-α))=eq\f(1,3),求coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(5,6)π+α))·sineq\b\lc\(\rc\)(\a\vs4\al\co1(\f(2π,3)-α))的值.[解析]coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(5,6)π+α))·sineq\b\lc\(\rc\)(\a\vs4\al\co1(\f(2π,3)-α))=coseq\b\lc\[\rc\](\a\vs4\al\co1(π-\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,6)-α))))·sineq\b\lc\[\rc\](\a\vs4\al\co1(π-\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,3)+α))))=-coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,6)-α))·sineq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,3)+α))=-coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,6)-α))·sineq\b\lc\[\rc\](\a\vs4\al\co1(\f(π,2)-\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,6)-α))))=-coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,6)-α))·coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,6)-α))=-eq\f(1,3)×eq\f(1,3)=-eq\f(1,9).4.已知cos(15°+α)=eq\f(3,5),α为锐角,求eq\f(tan435°-α+sinα-165°,cos195°+α·sin105°+α)的值.[解析]原式=eq\f(tan360°+75°-α-sinα+15°,cos180°+15°+α·sin[180°+α-75°])=eq\f(tan75°-α-sinα+15°,-cos15°+α·[-sinα-75°])=-eq\f(1,cos15°+α·sin15°+α)+eq\f(sinα+15°,cos15°+α·cos15°+α).因为α为锐角,所以0°<α<90°,所以15°<α+15°<105°.又cos(15°+α)=eq\f(3,5),所以sin(15°+α)=eq\f(4,5),故原式=-eq\f(1,\f(3,5)×\f(4,5))+eq\f(\f(4,5),\f(3,5)×\f(3,5))=eq\f(5,36).5.已知角α的终边经过点Peq\b\lc\(\rc\)(\a\vs4\al\co1(\f(4,5),-\f(3,5))).(1)求sinα的值;(2)求eq\f(sin\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)-α))tanα-π,sinα+πcos3π-α)的值.[解析](1)因为点Peq\b\lc\(\rc\)(\a\vs4\al\co1(\f(4,5),-\f(3,5))),所以|OP|=1,sinα=-eq\f(3,5).(2)eq\f(sin\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)-α))tanα-π,sinα+πcos3π-α)=eq\f(cosαtanα,-sinα-cosα)=eq\f(1,cosα),由三角函数定义知cosα=eq\f(4,5),故所求式子的值为eq\f(5,4).6.已知tanθ=2,求eq\f(sin\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)+θ))-cosπ-θ,sin\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)-θ))-sinπ-θ)的值.[解析]eq\f(sin\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)+θ))-cosπ-θ,sin\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)-θ))-sinπ-θ)=eq\f(cosθ--cosθ,cosθ-sinθ)=eq\f(2cosθ,cosθ-sinθ)=eq\f(2,1-tanθ)=eq\f(2,1-2)=-2.7.已知tan(3π+α)=2,则eq\f(sinα-3π+cosπ-α+sin\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)-α))-2cos\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)+α)),-sin-α+cosπ+α)=________.[解析]由tan(3π+α)=2,得tanα=2,所以原式=eq\f(-sinα+-cosα+cosα-2-sinα,sinα-cosα)=eq\f(sinα,sinα-cosα)=eq\f(tanα,tanα-1)=eq\f(2,2-1)=2.8.已知eq\f(sinθ+cosθ,sinθ-cosθ)=2,则sin(θ-5π)sineq\b\lc\(\rc\)(\a\vs4\al\co1(\f(3,2)π-θ))=________.[解析]∵eq\f(sinθ+cosθ,sinθ-cosθ)=2,sinθ=3cosθ,∴tanθ=3.sin(θ-5π)sineq\b\lc\(\rc\)(\a\vs4\al\co1(\f(3,2)π-θ))=sinθcosθ=eq\f(sinθcosθ,sin2θ+cos2θ)=eq\f(tanθ,tan2θ+1)=eq\f(3,10).9.已知cosα=-eq\f(4,5),且α为第三象限角.求f(α)=eq\f(tanπ-α·sinπ-α·sin\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)-α)),cosπ+α)的值.[解析]因为cosα=-eq\f(4,5),且α为第三象限角,所以sinα=-eq\r(1-cos2α)=-eq\r(1-\b\lc\(\rc\)(\a\vs4\al\co1(-\f(4,5)))2)=-eq\f(3,5).所以f(α)=eq\f(-tanα·sinα·cosα,-cosα)=tanαsinα=eq\f(sinα,cosα)·sinα=eq\f(-\f(3,5),-\f(4,5))×eq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(3,5)))=-eq\f(9,20).10.已知coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)+α))=2sineq\b\lc\(\rc\)(\a\vs4\al\co1(α-\f(π,2))),则eq\f(sin(π-α)+cos(π+α),5cos\b\lc\(\rc\)(\a\vs4\al\co1(\f(5π,2)-α))+3sin\b\lc\(\rc\)(\a\vs4\al\co1(\f(7π,2)-α)))=________.[解析]因为coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)+α))=2sineq\b\lc\(\rc\)(\a\vs4\al\co1(α-\f(π,2))),所以sinα=2cosα.原式=eq\f(sinα-cosα,5sinα-3cosα)=eq\f(2cosα-cosα,10cosα-3cosα)=eq\f(1,7).11.已知sin(α-3π)=2cos(α-4π),求eq\f(sin(π-α)+5cos(2π-α),2sin(\f(3π,2)-α)-sin(-α))的值.[解析]因为sin(α-3π)=2cos(α-4π),所以-sin(3π-α)=2cos(4π-α),所以-sin(π-α)=2cos(-α),所以sinα=-2cosα,且cosα≠0,所以原式=eq\f(sinα+5cosα,-2cosα+sinα)=eq\f(-2cosα+5cosα,-2cosα-2cosα)=eq\f(3cosα,-4cosα)=-eq\f(3,4).12.已知角θ的顶点在坐标原点,始边与x轴正半轴重合,终边在直线3x-y=0上,则eq\f(sin\b\lc\(\rc\)(\a\vs4\al\co1(\f(3π,2)+θ))+2cosπ-θ,sin\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)-θ))-sinπ-θ)=________.[解析]设θ的终边上一点为P(x,3x)(x≠0),则tanθ=eq\f(y,x)=eq\f(3x,x)=3.因此eq\f(sin\b\lc\(\rc\)(\a\vs4\al\co1(\f(3π,2)+θ))+2cosπ-θ,sin\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)-θ))-sinπ-θ)=eq\f(-cosθ-2cosθ,cosθ-sinθ)=eq\f(-3cosθ,cosθ-sinθ)=eq\f(-3,1-tanθ)=eq\f(-3,1-3)=eq\f(3,2).13.已知cos(75°+α)=eq\f(1,3),则sin(α-15°)+cos(10

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论