




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
【中学数学教案】
中学数学新人教版A必修二全部教案
第一章:空词几何体
柱、锥、台、球的结构特征
一、教学目标
1.学问与技能
(1)通过实物操作,增加学生的直观感知。
(2)能依据几何结构特征对空间物体进行分类。
(3)会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。
(4)会表示有关于几何体以与柱、锥、台的分类。
2.过程与方法
(1)让学生通过直观感受空间物体,从实物中概括出柱、锥、台、球的几何结构特征。
(2)让学生视察、探讨、归纳、概括所学的学问。
3.情感看法与价值观
(1)使学生感受空间几何体存在于现实生活四周,增加学生学习的主动性,同时提高学生的视察实力。
(2)培育学生的空间想象实力和抽象括实力。
二、教学重点、难点
重点:让学生感受大量空间实物与模型、概括出柱、锥、台、球的结构特征。
难点:柱、锥、台、球的结构特征的概括。
三、教学用具
(1)学法:视察、思索、沟通、探讨、概括。
(2)实物模型、投影仪
四、教学思路
(-)创设情景,揭示课题
1.老师提出问题:在我们生活四周中有不少有特色的建筑物,你能举出一些例子吗?这些建筑的
几何结构特征如何?引导学生回忆,举例和相互沟通。老师对学生的活动与时赐予评价。
2.所举的建筑物基本上都是由这些几何体组合而成的,(展示具有柱、锥、台、球结构特征的空
间物体),你能通过视察。依据某种标准对这些空间物体进行分类吗?这是我们所要学习的内容。
(二)、研探新知
1.引导学生视察物体、思索、沟通、探讨,对物体进行分类,分辩棱柱、圆柱、棱锥。
2.视察棱柱的几何物件以与投影出棱柱的图片,它们各自的特点是什么?它们的共同特点是什
么?
3.组织学生分组探讨,每小组选出一名同学发表本组探讨结果。在此基础上得出棱柱的主要结
构特征。(1)有两个面相互平行;(2)其余各面都是平行四边形;(3)每相邻两上四边形的公共边相
互平行。概括出棱柱的概念。
4.老师与学生结合图形共同得出棱柱相关概念以与棱柱的表示。
5.提出问题:各种这样的棱柱,主要有什么不同?可不行以依据不同对棱柱分类?
请列举身边具有已学过的几何结构特征的物体,并说出组成这些物体的几何结构特征?它们由
哪些基本几何体组成的?
6.以类似的方法,让学生思索、探讨、概括出棱锥、棱台的结构特征,并得出相关的概念,分
类以与表示。
7.让学生视察圆柱,并实物模型演示,如何得到圆柱,从而概括出圆标的概念以与相关的概念
与圆柱的表不。
8.引导学生以类似的方法思索圆锥、圆台、球的结构特征,以与相关概念和表示,借助实物模
型演示引导学生思索、探讨、概括。
9.老师指出圆柱和棱柱统称为柱体,棱台与圆台统称为台体,圆锥与棱锥统称为锥体。
10.现实世界中,我们看到的物体大多由具有柱、锥、台、球等几何结构特征的物体组合而成。
请列举身边具有己学过的几何结构特征的物体,并说出组成这些物体的几何结构特征?它们由哪些基
本几何体组成的?
(三)质疑答辩,排难解惑,发展思维,老师提出问题,让学生思索。
1.有两个面相互平行,其余后面都是平行四边形的几何体是不是棱柱(举反例说明,如图)
2.棱柱的何两个平面都可以作为棱柱的底面吗?
3.课本P8,习题L1A组第1题。
4.圆柱可以由矩形旋转得到,圆锥可以由直角三角形旋转得到,圆台可以由什么图形旋转得到?
如何旋转?
5.棱台与棱柱、棱锥有什么关系?圆台与圆柱、圆锥呢?
四、巩固深化
练习:课本P7练习1、2(1)(2)
课本P8习题1.1第2、3、4题
五、归纳整理
由学生整理学习了哪些内容
六、布置作业
课本P8练习题1.1B组第1题
课外练习课本P8习题1.1B组第2题
空间几百体的三瓢SB《I瞟时)
一、教学目标
1.学问与技能
(1)驾驭画三视图的基本技能
(2)丰富学生的空间想象力
2.过程与方法
主要通过学生自己的亲身实践,动手作图,体会三视图的作用。
3.情感看法与价值观
(1)提高学生空间想象力
(2)体会三视图的作用
二、教学重点、难点
重点:画出简洁组合体的三视图
难点:识别三视图所表示的空间几何体
三、学法与教学用具
1.学法:视察、动手实践、探讨、类比
2.教学用具:实物模型、三角板
四、教学思路
(-)创设情景,揭开课题
“横看成岭侧看成峰”,这说明从不同的角度看同一物体视觉的效果可能不同,要比较真实反映
出物体,我们可从多角度观看物体,这堂课我们主要学习空间几何体的三视图。
在初中,我们己经学习了正方体、长方体、圆柱、圆锥、球的三视图(正视图、侧视图、俯视图),
你能画出空间几何体的三视图吗?
(~)实践动手作图
1.讲台上放球、长方体实物,要求学生画出它们的三视图,老师巡察,学生画完后可沟通结果并
探讨;
2.老师引导学生用类比方法画出简洁组合体的三视图
(1)画出球放在长方体上的三视图
(2)画出矿泉水瓶(实物放在桌面上)的三视图
学生画完后,可把自己的作品展示并与同学沟通,总结自己的作图心得。
作三视图之前应当细心视察,相识了它的基本结构特征后,再动手作图。
3.三视图与几何体之间的相互转化。
(1)投影出示图片(课本P10,图1.2-3)
请同学们思索图中的三视图表示的几何体是什么?
(2)你能画出圆台的三视图吗?
(3)三视图对于相识空间几何体有何作用?你有何体会?
老师巡察指导,解答学生在学习中遇到的困难,然后让学生发表对上述问题的看法。
4.请同学们画出1.2-4中其他物体表示的空间几何体的三视图,并与其他同学沟通。
(三)巩固练习
课本P12练习1、2P18习题1.2人组1
(四)归纳整理
请学生回顾发表如何作好空间几何体的三视图
(五)课外练习
1.自己动手制作一个底面是正方形,侧面是全等的三角形的棱锥模型,并画出它的三视图。
2.自己制作一个上、下底面都是相像的正三角形,侧面是全等的等腰梯形的棱台模型,并画出它
的三视图。
(六)教学反思:
变同几百年的直观0B(I碟时)
一、教学目标
1.学问与技能
(1)驾驭斜二测画法画水平设置的平面图形的直观图。
(2)采纳对比的方法了解在平行投影下画空间图形与在中心投影下画空间图形两种方法的各自特
点。
2.过程与方法
学生通过视察和类比,利用斜二测画法画出空间几何体的直观图。
3.情感看法与价值观
(1)提高空间想象力与直观感受。
(2)体会对比在学习中的作用。
(3)感受几何作图在生产活动中的应用。
二、教学重点、难点
重点、难点:用斜二测画法画空间几何值的直观图。
三、学法与教学用具
1.学法:学生通过作图感受图形直观感,并自然采纳斜二测画法画空间几何体的过程。
2.教学用具:三角板、圆规
四、教学思路
(-)创设情景,揭示课题
1.我们都学过画画,这节课我们画一物体:圆柱
把实物圆柱放在讲台上让学生画。
2.学生画完后展示自己的结果并与同学沟通,比较谁画的效果更好,思索怎样才能画好物体的直
观图呢?这是我们这节主要学习的内容。
(―)研探新知
1.例1,用斜二测画法画水平放置的正六边形的直观图,由学生阅读理解,并思索斜二测画法的
关键步骤,学生发表自己的见解,老师与时赐予点评。
画水平放置的多边形的直观图的关键是确定多边形顶点的位置,因为多边形顶点的位置一旦确定,
依次连结这些顶点就可画出多边形来,因此平面多边形水平放置时,直观图的画法可以归结为确定点
的位置的画法。强调斜二测画法的步骤。
练习反馈
依据斜二测画法,画出水平放置的正五边形的直观图,让学生独立完成后,老师检查。
2.例2,用斜二测画法画水平放置的圆的直观图
老师引导学生与例1进行比较,与画水平放置的多边形的直观图一样,画水平放置的圆的直观图,
也是要先画出一些有代表性的点,由于不能像多边那样干脆以顶点为代表点,因此须要自己构造出一
些点。
老师组织学生思索、探讨和沟通,如何构造出须要的一些点,与学生共同完成例2并具体板书画
法。
3.探求空间几何体的直观图的画法
(1)例3,用斜二测画法画长、宽、高分别是4、3、2的长方体'B'C'D'的直观图。
老师引导学生完成,要留意对每一步骤提出严格要求,让学生按部就班地画好每一步,不能敷衍
了事。
(2)投影出示几何体的三视图、课本P15图1.2-9,请说出三视图表示的几何体?并用斜二测画
法画出它的直观图。老师组织学生思索,探讨和沟通完成,老师巡察帮不懂的同学解疑,引导学生正
确把握图形尺寸大小之间的关系。
4.平行投影与中心投影
投影出示课本P17图1.2-12,让学生视察比较概括在平行投影下画空间图形与在中心投影下画空
间图形的各自特点。
5.巩固练习,课本P16练习1(1),2,3,4
三、归纳整理
学生回顾斜二测画法的关键与步骤
四、作业
1.书画作业,课本P17练习第5题
2.课外思索课本P16,探究(1)(2)
(五)教学反思:
槎体、维体、金体的底面积芍体积
一、教学目标
1、学问与技能
(1)通过对柱、锥、台体的探讨,驾驭柱、锥、台的表面积和体积的求法。
(2)能运用公式求解,柱体、锥体和台全的全积,并且熟识台体与术体和锥体之间的转换关系。
(3)培育学生空间想象实力和思维实力。
2、过程与方法
(1)让学生经验几何全的侧面展一过程,感知几何体的形态。
(2)让学生通比照比较,理顺柱体、锥体、台体三间的面积和体积的关系。
3、情感与价值
通过学习,使学生感受到几何风光积和体积的求解过程,对自己空间思维实力影响。从而
增加学习的主动性。
二、教学重点、难点
重点:柱体、锥体、台体的表面积和体积计算
难点:台体体积公式的推导
三、学法与教学用具
1、学法:学生通过阅读教材,自主学习、思索、沟通、探讨和概括,通过剖析实物几何体感受
几何体的特征,从而更好地完成本节课的教学目标。
2、教学用具:实物几何体,投影仪
四、教学设想
1、创设情境
(1)老师提出问题:在过去的学习中,我们已经接触过一些几何体的面积和体积的求法与公式,
哪些几何体可以求出表面积和体积?引导学生回忆,相互沟通,老师归类。
(2)老师设疑:几何体的表面积等于它的绽开圈的面积,则,柱体,锥体,台体的侧面绽开图
是怎样的?你能否计算?引入本节内容。
2、探究新知
(1)利用多媒体设备向学生投放正棱柱、正三棱锥和正三棱台的侧面绽开图
(2)组织学生分组探讨:这三个图形的表面由哪些平面图形构成?表面积如何求?
(3)老师对学生探讨归
纳的结果进行点评。
3、质疑答辩、排难解惑、
发展思维
(1)老师引导学生探究圆柱、
圆锥、圆台的侧面绽开图的结构,并归纳出其表面积的计算公式:
为上底半径r为下底半径1为母线长
(2)组织学生思索圆台的表面积公式与圆柱与圆锥表面积公式之间的改变关系。
(3)老师引导学生探究:如何把一个三棱柱分割成三个等体积的
锥?由此加深学生对等底、等高的锥体与柱体体积之间的关系的了解。如
(4)老师指导学生思索,比较柱体、锥体,台体的体积公式之间
的关系。
(s'分别我上下底面面积,h为台柱高)
4、例题分析讲解
(课本)例1、例2、例3
5、巩固深化、反馈矫正
老师投影练习
1、已知圆锥的表面积为am,,且它的侧面绽开图是一个半圆,则这个圆锥的底面直径
为o恪综,
2、棱台的两个底面面积分别是245cIrf和80cm,,截得这个棱台的棱锥的高为35,求这个棱台
的体积。(答案:23253)
6、课堂小结
本节课学习了柱体、锥体与台体的表面积和体积的结构和求解方法与公式。用联系的关点看待
三者之间的关系,更加便利于我们对空间几何体的了解和驾驭。
7、评价设计
习题1.3A组1.3
(五)教学反思:
§球的体积和表面积
教学目标
1.学问与技能
⑴通过对球的体积和面积公式的推导,了解推导过程中所用的基本数学思想方法:“分
割一一求和一一化为精确和”,有利于同学们进一步学习微积分和近代数学学问。
⑵能运用球的面积和体积公式敏捷解决实际问题。
⑶培育学生的空间思维实力和空间想象实力。
2.过程与方法
通过球的体积和面积公式的推导,从而得到一种推导球体积公式丫=”|^和面积公式S=4nR2
的方法,即“分割求近似值,再由近似和转化为球的体积和面积”的方法,体现了极限思想。
3.情感与价值观
通过学习,使我们对球的体积和面积公式的推导方法有了确定的了解,提高了空间思维实力和空
间想象实力,增加了我们探究问题和解决问题的信念。
二.教学重点、难点
重点:引导学生了解推导球的体积和面积公式所运用的基本思想方法。
难点:推导体积和面积公式中空间想象实力的形成。
三.学法和教学用具
1.学法:学生通过阅读教材,发挥空间想象实力,了解并初步驾驭“分割、求近似值
的、再由近似值的和转化为球的体积和面积”的解题方法和步骤。
2.教学用具:投影仪
四.教学设计
(-)创设情景
⑴老师提出问题:球既没有底面,也无法像在柱体、锥体和台体那样绽开成平面图形,则怎样来
求球的表面积与体积呢?引导学生进行思索。
⑵老师设疑:球的大小是与球的半径有关,如何用球半径来表示球的体积和面积?激发学生推导
球的体积和面积公式。
(二)探究新知
1.球的体积:
假如用一组等距离的平面去切割球,当距离很小之时得到很多“小圆片”,“小圆片”的体积的体积之
和正好是球的体积,由于“小圆片”近似于圆柱形态,所以它的体积也近似于圆柱形态,所以它的体
积有也近似于相应的圆柱和体积,因此求球的体积可以按“分割一一求和一一化为精确和”的方法来
进行。
步骤:
第一步:分割
如图:把半球的垂直于底面的半径0A作n等分,过这些等分点,用一
组平行于底面的平面把半球切割成n个“小圆片”,“小圆片”厚度近似为,底
面是“小圆片”的底面。
如图:J
得
其次步:求和
第三步:化为精确的和
当n-8时,-0(同学们探讨得出)
所以
得到定理:半径是R的球的体积
练习:一种空心钢球的质量是142g,外径是5,求它的内径(钢的密度是7.9:1)
2.球的表面积:
球的表面积是球的表面大小的度量,它也是球半径R的函数,由于球面是不行展的曲面,所以不能像
推导圆柱、圆锥的表面积公式那样推导球的表面积公式,所以仍旧用“分割、求近似和,再由近似和转
化为精确和”方法推导。
思索:推导过程是以什么量作为等量变换的?
2
半径为R的球的表面积为S=4JIR
练习:长方体的一个顶点上三条棱长分别为3、4、5,是它的八个顶点都在同一球面上,则这个
球的表面积是o(答案50元)
(三)典例分析
课本P”例4和Pw例5
(四)巩固深化、反馈矫正
⑴正方形的内切球和外接球的体积的比为,表面积比为。
(答案:;3:1)
⑵在球心同侧有相距9的两个平行截面,它们的面积分别为49亡和400n2,求球的表面积。(答
案:2500n2)
析:可画出球的轴截面,利用球的截面性质求球的(五)课
径堂
小
结
本节
课主
要学习了球的体积和球的表面积公式的推导,以与利用公式解决相关的球的问题,了解了推导中的“分
割、求近似和,再由近似和转化为精确和”的解题方法。
(六)评价设计
作业P3o练习1、3,B(1)
(七)教学反思:
其次章直线与平面的位置关系
§平面
一、教学目标:
1、学问与技能
(1)利用生活中的实物对平面进行描述;
(2)驾驭平面的表示法与水平放置的直观图;
(3)驾驭平面的基本性质与作用;
(4)培育学生的空间想象实力。
2、过程与方法
(1)通过师生的共同探讨,使学生对平面有了感性相识;
(2)让学生归纳整理本节所学学问。
3、情感与价值
运用学生相识到我们所处的世界是一个三维空间,进而增加了学习的爱好。
二、教学重点、难点
重点:1、平面的概念与表示;
2、平面的基本性质,留意他们的条件、结论、作用、图形语言与符号语言。
难点:平面基本性质的驾驭与运用。
三、学法与教学用具
1、学法:学生通过阅读教材,联系身边的实物思索、沟通,师生共同探讨等,从而较好地完成本节课
的教学目标。
2、教学用具:投影仪、投影片、正(长)方形模型、三角板
四、教学思想
(-)实物引入、揭示课题
师:生活中常见的如黑板、平整的操场、桌面、安静的湖面等等,都给我们以平面的印象,你们能举
出更多例子吗?引导学生视察、思索、举例和相互沟通。与此同时,老师对学生的活动赐予评价。
师:则,平面的含义是什么呢?这就是我们这节课所要学习的内容。
(-)研探新知
1、平面含义
师:以上实物都给我们以平面的印象,几何里所说的平面,就是从这样的一些物体中抽象出来的,但
是,几何里的平面是无限延展的。
2、平面的画法与表示
师:在平面几何中,怎样画直线?(一学生上黑板画)
之后老师加以确定,解说、类比,将学问迁移,得出平面的画法:水平放置的平面通常画成一个平行
四边形,锐角画成45°,且横边画成邻边的2倍长(如图)
平面通常用希腊字母a、B、,声表示,如平吵9平面B等,也可以用表示平面的平行四边形的四
个顶点或者相对的两个顶点的屿字母来表否/4口平面、平面等。
假如几个平面画在一起,四外平面的一部施另一个平面遮住时,应画成虚线或不画(打出投影片)
课本P41图2.1-4说明
平面内有多数个点,平可以看成弱的集合。
点A在平吵祗,记作:AGa
点8初痂a外,记作:
IB"
3、平面的基本性质
老师引导学生思索教材P41的思索题,让学生充分发表自己的见解。
师:把一把直尺边缘上的随意两点放在桌边,可以看到,直尺的整个边缘就落在了桌面上,用事实引
导学生归纳出以下公理
公理1:假如一条直线上的两点在一个平面内,则这条直线在此平面内
(老师引导学生阅读教材P42前几行相关内容,并加以解析)
符号表示为
AGL、/-------------7
BGL=>LaIC(/-L.R/
Aea
BGa
公理1作用:推断直线是否在平面内
师:生活中,我们看到三脚架可以坚固地支撑照相机或测量用的平板仪等等……
引导学生归纳出公理2
公理2:过不在一条直线上的三点,有且只有一个平面。AB
符号表示为:A、B、C三点不共线=>有且只有一个平面a,•C•
使AGa、BGa、Cea<>L-------------'
公理2作用:确定一个平面的依据。
老师用正(长)方形模型,让学生理解两个平面的交线的含义。
引导学生阅读P42的思索题,从而归纳出公理3
公理3:假如两个不重合的平面有一个公共点,则它们有且只有一条过该点的公共直线。
符号表示为:PGanP=>aCB,且PGL
公理3作用:判定两个平面是否相交的依据〈\
4、教材P43例1/\
通过例子,让学生驾驭图形中点、线、面的位置关系与符号的正确运用。
5、课堂练习:课本P44练习1、2、3、4
6、课时小结:(师生互动,共同归纳)
(1)本节课我们学习了哪些学问内容?(2)三个公理的内容与作用是什么?
7、作业布置
(1)复习本节课内容;
(2)预习:同一平面内的两条直线有几种位置关系?
(五)教学反思:
§空间中直线与直线之间的任宣关系
一、教学目标:
1、学问与技能
(1)了解空间中两条直线的位置关系;
(2)理解异面直线的概念、画法,培育学生的空间想象实力;
(3)理解并驾驭公理4;
(4)理解并驾驭等角定理;
(5)异面直线所成角的定义、范围与应用。
2、过程与方法
(1)师生的共同探讨与讲授法相结合;
(2)让学生在学习过程不断归纳整理所学学问。
3、情感与价值
让学生感受到驾驭空间两直线关系的必要性,提高学生的学习爱好。
二、教学重点、难点
重点:1、异面直线的概念;
2、公理4与等角定理。
难点:异面直线所成角的计算。
三、学法与教学用具
1、学法:学生通过阅读教材、思索与老师沟通、概括,从而较好地完成本节课的教学目标。
2、教学用具:投影仪、投影片、长方体模型、三角板
四、教学思想
(-)创设情景、导入课题
1、通过身边诸多实物,引导学生思索、举例和相互沟通得出异面直线的概念:不同在任何一个平面内
的两条直线叫做异面直线。
2、师:则,空间两条直线有多少种位置关系?(板书课题)
(二)讲授新课
1、老师给出长方体模型,引导学生得出空间的两条直线有如下三种关系:
什.矍交直线:同一平面内,有且只有一个公共点;
''戈建行直线:同一平面内,没有公共点;
异面直线:不同在任何一个平面内,没有公共点。
老师再次强调异面直线不共面的特点,作图时通常用一个或两个平面衬托,如下图:
2、(1)师:在同一平面内,假如两条直线都与第三条直线平行,则这两条直线相互平行。在空间中,
是否有类似的规律?
组织学生思索:
长方体'B'C'D'中,
‘与‘平行吗?
生:平行
AH
再联系其他相应实例归纳出公理4
公理4:平行于同一条直线的两条直线相互平行。
符号表示为:设a、b、c是三条直线
a〃b}=>a//c
c〃b
强调:公理4实质上是说平行具有传递性,在平面、空间这特性质都适用。
公理4作用:推断空间两条直线平行的依据。
(2)例2(投影片)
例2的讲解让学生驾驭了公理4的运用
(3)教材P47探究
让学生在思索和沟通中提升了对公理4的运用实力。
3、组织学生思索教材P47的思索题
(投影)
让学生视察、思索:
N与A'D'C'、N与NA'B'C的两边分别对应平行,这两组角的大小关系如何?
生:/=A'D'C',Z+ZA'B'C=180°
老师画出更具一般性的图形,师生共同归纳出如下定理
等角定理:空间中假如两个角的两边分别对应平行,则这两个角相等或互补。
老师强调:并非全部关于平面图形的结论都可以推广到空间中来。
4、以老师讲授为主,师生共同沟通,导出异面直线所成的角的概念。
(1)师:如图,己知异面直线a、b,经过空间中任一点0作直线a'〃a、b'〃b,我们把a'与b'所成
的锐角(或直角)叫异面直线a与b所成的角(夹角)。
(2)强调:
①a'与b'所成的角的大小只由a、b的相互位置来确定,与。的选择无关,为了简便,点O一般取
在两直线中的一条上;n
②两条异面直线所成的角oe(o,);y
③当两条异面直线所成的角是直角时,我们就说这两条异面直线相互垂直,记作aj_b;
④两条直线相互垂直,有共面垂直与异面垂直两种情形;
⑤计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角。
(3)例3(投影)
例3的给出让学生驾驭了如何求异面直线所成的角,从而巩固了所学学问。
(三)课堂练习
教材P49练习1、2
充分调动学生动手的主动性,老师适时赐予确定。
(四)课堂小结
在师生互动中让学生了解:
(1)本节课学习了哪些学问内容?
(2)计算异面直线所成的角应留意什么?
(五)课后作业
1、推断题:
(1)a〃bc±a=>c±b()
(1)a±cb±c=>a±b()
2、填空题:
在正方体'B'C'D'中,与'成异面直线的有条。
(五)教学反思:
§—2.1.4空同中直线与平面、
平面与平面〈周的但JE契系
一、教学目标:
1、学问与技能
(1)了解空间中直线与平面的位置关系;
(2)了解空间中平面与平面的位置关系;
(3)培育学生的空间想象实力。
2、过程与方法
(1)学生通过视察与类比加深了对这些位置关系的理解、驾驭;
(2)让学生利用已有的学问与阅历归纳整理本节所学学问。
二、教学重点、难点
重点:空间直线与平面、平面与平面之间的位置关系。
难点:用图形表达直线与平面、平面与平面的位置关系。
三、学法与教学用具
1、学法:学生借助实物,通过视察、类比、思索等,较好地完成本节课的教学目标。
2、教学用具:投影仪、投影片、长方体模型
四、教学思想
(-)创设情景、导入课题
老师以生活中的实例以与课本P49的思索题为载体,提出了:空间中直线与平面有多少种位置关系?
(板书课题)
(-)研探新知
1、引导学生视察、思索身边的实物,从而直观、精确地归纳出直线与平面有三种位置关系:
(1)直线在平面内一一有多数个公共点
(2)直线与平面相交一一有且只有一个公共点
(3)直线在平面平行一一没有公共点
指出:直线与平面相交或平行的状况统称为直线在平面外,可用a表示
aOQ
例4(投影)
师生共同完成例4
例4的给出加深了学生对这几种位置关系的理解。
2、引导学生对生活实例以与对长方体模型的视察、思索,精确归纳出两个平面之间有两种位置关系:
(1)两个平面平行一一没有公共点
(2)两个平面相交一一有且只有一条公共直线
用类比的方法,学生很快地理螭与驾驭了新内容,这两种位置关系用图形表示为
老师指出:画两个相互平行的平面时,要留意使表示8面的两个平行四边形的对应边平行。
教材P51探关------------7a16
让学生独力思索,稍后老师作指导,加深学生:眸而种便殷系的理解
教材P5HO
学生独立完成后老师检查、指导
(三)归纳整理、整体相识
老师引导学生归纳,整理本节课的学问脉络,提升他们驾驭学问的层次。
(四)作业
1、让学生回去整理这三节课的内容,理清脉络。
2、教材P52习题2.1A组第5题
(五)教学反思:
§直线芍平面平行的判定
一、教学目标:
1、学问与技能
(1)理解并驾驭直线与平面平行的判定定理;
(2)进一步培育学生视察、发觉的实力和空间想象实力;
2、过程与方法
学生通过视察图形,借助已有学问,驾驭直线与平面平行的判定定理。
3、情感、看法与价值观
(1)让学生在发觉中学习,增加学习的主动性;
(2)让学生了解空间与平面相互转换的数学思想。
二、教学重点、难点
重点、难点:直线与平面平行的判定定理与应用。
三、学法与教学用具
1、学法:学生借助实例,通过视察、思索、沟通、探讨等,理解判定定理。
2、教学用具:投影仪(片)
四、教学思想
(-)创设情景、揭示课题
引导学生视察身边的实物,如教材第55页视察题:封面所在直线与桌面所在平面具有什么样的位置关
系?如何去确定这种关系呢?这就是我们本节课所要学习的内容。
(-)研探新知
1、投影问题
直线a与平面a平行吗?/------------7
若a内有直线b与a平行,/三
则a与a的位置关系如何?
是否可以保证直线a与平面a平行?/------——7
学生思索后,师生共同探讨,得出以下结论
直线与平面平行的判定定理:平面外一条直赢此平面内的4直线平行,则该直线与此平面平行。
简记为:线线平行,则线面平行。
符号表示:
aa。1
bP=>a〃a匚
a〃b」
2、例1引导学生思索后,师生共同完成
该例是判定定理的应用,让学生驾驭将空间问题转化为平面问题的化归思想。
(三)自主学习、发展思维
练习:教材第57页1、2题
让学生独立完成,老师检查、指导、讲评。
(四)归纳整理
1、同学们在运用该判定定理时应留意什么?
2、在解决空间几何问题时,常将之转换为平面几何问题。
(五)作业
1、教材第64页习题2.2A组第3题;
2、预习:如何判定两个平面平行?
§平面与平面平行的制定
一、教学目标:
1、学问与技能
理解并驾驭两平面平行的判定定理。
2、过程与方法
让学生通过视察实物与模型,得出两平面平行的判定。
3、情感、看法与价值观
进一步培育学生空间问题平面化的思想。
二、教学重点、难点
重点:两个平面平行的判定。
难点:判定定理、例题的证明。
三、学法与教学用具
1、学法:学生借助实物,通过视察、类比、思索、探讨,老师予以启发,得出两平面平行的判定。
2、教学用具:投影仪、投影片、长方体模型
四、教学思想
(-)创设情景、引入课题
引导学生视察、思索教材第57页的视察题,导入本节课所学主题。
(-)研探新知
1、问题:
(1)平面B内有一条直线与平面a平行,a、B平行吗?
(2)平面B内有两条直线与平面a平行,a、B平行吗?
通过长方体模型,引导学生视察、思索、沟通,得出结论。
两个平面平行的判定定理:一个平面内的两条交直线与另一个平面平行,则这两个平面平行。
符号表示:
aBU、
b13C
aAb=PB〃a>
a〃a
b〃a
老师指出:推断两平面平行的方法有三种:
(1)用定义;
(2)判定定理;
(3)垂直于同一条直线的两个平面平行。
2、例2引导学生思索后,老师讲授。
例子的给出,有利于学生驾驭该定理的应用。
(三)自主学习、加深相识
练习:教材第59页1、2、3题。
学生先独立完成后,老师指导讲评。
(四)归纳整理、整体相识
1、判定定理中的线与线、线与面应具备什么条件?
2、在本节课的学习过程中,还有哪些不明白的地方,请向老师提出。
(五)作业布置
第65页习题2.2A组第7题。
(六)教学反思:
§—2.2.4直线苍平面、平面苍平面平行的性质
一、教学目标:
1、学问与技能
(1)驾驭直线与平面平行的性质定理与其应用;
(2)驾驭两个平面平行的性质定理与其应用。
2、过程与方法
学生通过视察与类比,借助实物模型理解性质与应用。
3、情感、看法与价值观
(1)进一步提高学生空间想象实力、思维实力;
(2)进一步体会类比的作用;
(3)进一步渗透等价转化的思想。
二、教学重点、难点
重点:两特性质定理。
难点:(1)性质定理的证明;
(2)性质定理的正确运用。
三、学法与教学用具
1、学法:学生借助实物,通过类比、沟通等,得出性质与基本应用。
2、教学用具:投影仪、投影片、长方体模型
四、教学思想
(-)创设情景、引入新课
1、思索题:教材第60页,思索(1)(2)
学生思索、沟通,得出
(1)一条直线与平面平行,并不能保证这个平面内的全部直线都与这个直线平行;
(2)直线a与平面a平行,过直线a的某一平面,若与平面a相交,则直线a就平行于这条交线。
在老师的启发下,师生共同完成
该结论的证明过程。
于是,得到直线与平面平行的性质定理。
定理:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。
简记为:线面平行则线线平行。
符号表示:
a/7a
aBa〃U
aDg=b
作用:利用该定理可解决直线间的平行问题。
2、例3培育学生思维,动手实力,激发学习爱好。
例4性质定理的干脆应用,它渗透着化归思想,老师应多做引导。
3、思索:假如两个平面平行,则一个平面内的直线与另一个平面内的直线具有什么样的位置关系?
学生借助长方体模型思索、沟通得出结论:异面或平行。
再问:平面内哪些直线与B'D'平行?怎么找?
在老师的启发下,师生
共同完成该结论与证明过程,
于是得到两个平面平行的性质定理。
定理:假如两个平面同时与第三个平面相交,则它们的交乡
符号表示:
a〃B、
anY=aa〃b
PnY=b
老师指出:可以由平面与平面平行得出直线与直线平行
4、例5
以讲授为主,引导学生共同完成,逐步培育学生应用定理解题的实力。
(三)自主学习、巩固学问
练习:课本笫63页
学生独立完成,老师进行订正。
(四)归纳整理、整体相识
1、通过对两特性质定理的学习,大家应留意些什么?
2、本节课涉与到哪些主要的数学思想方法?
(五)布置作业
课本第65页习题2.2A组第6题。
(六)教学反思:
§♦线与平面垂直的判定
一、教学目标
1、学问与技能
(1)使学生驾驭直线和平面垂直的定义与判定定理;
(2)使学生驾驭判定直线和平面垂直的方法;
(3)培育学生的儿何直观实力,使他们在直观感知,操作确认的基础上学会归纳、概括结论。
2、过程与方法
(1)通过教学活动,使学生了解,感受直线和平面垂直的定义的形成过程;
(2)探究判定直线与平面垂直的方法。
3、情态与价值
培育学生学会从“感性相识”到“理性相识”过程中获得新知。
二、教学重点、难点
直线与平面垂直的定义和判定定理的探究。
三、教学设计
(-)创设情景,揭示课题
1、老师首先提出问题:在现实生活中,我们常常看到一些直线与平面垂直的现象,例如:“旗杆
与地面,大桥的桥柱和水面等的位置关系”,你能举出一些类似的例子吗?然后让学生回忆、思索、探
讨、老师对学生的活动赐予评价。
2、接着老师指出:一条直线与一个平面垂直的意义是什么?并通过分析旗杆与它在地面上的射影
的位置关系引出课题内容。
(二)研探新知
1、为使学生学会从“感性相识”到“理性相识”过程中获得新知,可再借助长方体模型让学生感
知直线与平面的垂直关系。然后老师引导学生用“平面化”的思想来思索问题:从直线与直线垂直、
直线与平面平行等的定义过程得到启发,能否用一条直线垂直于一个平面内的直线来定义这条直线与
这个平面垂直呢?并组织学生沟通探讨,概括其定义。
假如直线L与平面a内的随意一条直线都垂直,我们就说直线L与平面a相互垂直,记作L,a,
直线L叫做平面a的垂线,平面a叫做直线L的垂面。如图2.37,直线与平面垂直时,它们唯一公共
点P叫做垂足。并对画示表示进行说明。
2、老师提出问题,
(1)问题:虽然可以依据定义判定直线与平面垂直,但这种方法事实上难以实施。有没有比较便
利可行的方法来推断直线和平面垂直呢?
(2)师生活动:请同学们打算一块三角形的纸片,我们一起来做如图2.3-2试验:过△的顶点A
翻折纸片,得到折痕,将翻折后的纸片竖起放置在桌面上(、与桌面接触),问如何翻折才能保证折痕
与桌面所在平面垂直?
B
(3)归纳结论:引导学生依据直观感知与己有阅历(两条相交直线确定一个平面),进行合情推
理,获得判定定理:
一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。
老师特殊强调:a)定理中的“两条相交直线”这一条件不行忽视;
b)定理体现了“直线与平面垂直”与“直线与直线垂直”相互转化的数学思想。
(三)实际应用,巩固深化
(1)课本P69例1教学
(2)课本P69例2教学
(四)归纳小结,课后思索
小结:采纳师生对话形式,完成下列问题:
①请归纳一下获得直线与平面垂直的判定定理的基本过程。②直线与平面垂直的判定
定理,体现的教学思想方法是什么?
课后作业:
①课本P70练习2
②求证:假如一条直线平行于一个平面,则这个平面的任何垂线都和这条直线垂直。
思索题:假如一条直线垂直于平面内的多数条直线,则这条直线就和这个平面垂直,这个结论对
吗?为什么?
(五)教学反思:
§平面若平面垂直的判定
一、教学目标
1、学问与技能
(1)使学生正确理解和驾驭“二面角”、“二面角的平面角”与“直二面角”、“两个平面相互垂直”
的概念;
(2)使学生驾驭两个平面垂直的判定定理与其简洁的应用;
(3)使学生理睬“类比归纳”思想在数学问题解决上的作用。
2、过程与方法
(1)通过实例让学生直观感知“二面角”概念的形成过程;
(2)类比己学学问,归纳“二面角”的度量方法与两个平面垂直的判定定理。
3、情态与价值
通过揭示概念的形成、发展和应用过程,使学生理睬教学存在于观实生活四周,从中激发学生主
动思维,培育学生的视察、分析、解决问题实力。
二、教学重点、难点。
重点:平面与平面垂直的判定;
难点:如何度量二面角的大小。
三、学法与教学用具。
1、学法:实物视察,类比归纳,语言表达。
2、教学用具:二面角模型(两块硬纸板)
四、教学设计
(-)创设情景,揭示课题
问题1:平面几何中“角”是怎样定义的?
问题2:在立体几何中,“异面直线所成的角”、“直线和平面所成的角”又是怎样定义的?它们有
什么共同的特征?
以上问题让学生自由发言,老师再作小结,并顺势抛出问题:在生产实践中,有很多问题要涉与
到两个平面相交所成的角的情形,你能举出这个问题的一些例子吗?如修水坝、放射人造卫星等,而
这样的角有何特点,该如何表示呢?下面我们共同来视察,研探。
(二)研探新知
1、二面角的有关概念
老师展示一张纸面,并对折让学生视察其状,然后引导学生用数学思维思索,并对以上问题类比,
归纳出二面角的概念与记法表示(如下表所示)
角二面角
A
边上_
梭]
图形
BN
i点0边B
队平面内一点动身的两条射线(半直队空间始终线动身的两个半平面所组成的
定义
)所组成的图形衫
构成时线一点(顶点)一射线华平面一线(棱)一半平面
表示Z二面角aB或aB
2、二面角的度量
二面角定理地反映了两个平面相交的位置关系,如我们常说“把门开大一些”,是指二面角大一
些,那我们应如何度量二两角的大小呢?师生活动:师生共同做一个小试验(预先打算好的二面角的
模型)在其棱上位取一点为顶点,在两个半平面内各作一射线(如图2.3-3),通过试验操作,研探二
面角大小的度量方法一一二面角的平面角。
老师特殊指出:
(1)在表示二面角的平面角时,要求,±L;
(2)N的大小与点0在L上位置无关;
(3)当二面角的平面角是直角时,这两个平
面的位置关系怎样?
承上启下,引导学生视察,类比、自主探究,
获得两个平面相互垂直的判定定理:
一个平面过另一个平面的垂线,则这两个平面垂直。
(三)应用举例,强化所学
例题:课本P.72例3图2.3-3
做法:老师引导学生分析题意,先让学生自己动手推理证明,然后抽检学生驾驭状况,老师最终
讲评并板书证明过程。
(四)运用反馈,深化巩固
问题:课本P.73的探究问题
做法:学生思索(或分组探讨),老师与学生对话完成。
(五)小结归纳,整体相识
(1)二面角以与平面角的有关概念;
(2)两个平面垂直的判定定理的内容,它与直线与平面垂直的判定定理有何关系?
(六)课后巩固,拓展思维
1、课后作业:自二面角内一点分别向两个面引垂线,求证:它们所成的角与二两角的平面角互
补。
2、课后思索问题:在表示二面角的平面角时,为何要求“_LL、_LL"?为什么/的大小与点0
在L上的位置无关?
(七)教学反思:
§2、3.3直线与平面垂亶的膛质
§2、3.4平面与平面垂直的膛质
一、教学目标
1、学问与技能
(1)使学生驾驭直线与平面垂直,平面与平面垂直的性质定理;
(2)能运用性质定理解决一些简洁问题;
(3)了解直线与平面、平面与平面垂直的判定定理和性质定理间的相互联系。
2、过程与方法
(1)让学生在视察物体模型的基础上,进行操作确认,获得对性质定理正确性的相识;
(2)性质定理的推理论证。
3、情态与价值
通过“直观感知、操作确认,推理证明”,培育学生空间概念、空间想象实力以与逻辑推理实力。
二、教学重点、难点
两特性质定理的证明。
三、学法与用具
(1)学法:直观感知、操作确认,猜想与证明。
(2)用具:长方体模型。
四、教学设计
(-)创设情景,揭示课题
问题:若一条直线与一个平面垂直,则可得到什么结论?若两条直线与同一个平面垂直呢?
让学生自由发言,老师不急于下结论,而是接着引导学生:欲知结论怎样,让我们一起来视察、
研探。(自然进入课题内容)
(二)研探新知
1、操作确认
视察长方体模型中四条侧棱与同一个底面的位置关系。如图2.3—4,在长方体一AWC'D'中,棱'、
'所在直线都垂直于平面,它们之间是有什么位置关系?(明显相互平行)然后进一步迁移活动:
已知直线aJ.a、b±a,则直线a、b确定平行吗?(确定)我们能否证明这一事实的正确性呢?
D1C1
B1ab
A1
2、推理证明
引导学生分析性质定理成立的条件,介绍证明性质定理成立的特殊方法一一反证法,
然后师生互动共同完成该推理过程,最终归纳得出:
垂直于同一个平面的两条直线平行。
(三)应用巩固
例子:课本P.74例4
做法:老师给出问题,学生思索探究、推断并说理由,老师最终评议。
(四)类比拓展,研探新知
类比上面定理:若在两个平面相互垂直的条件下,又会得出怎样的结论呢?例如:如何在黑板面
上画一条与地面垂直的直线?
引导学生视察教室相邻两面墙的交线,简洁发觉该交线与地面垂直,这时,只要在黑板上画出
一条与这交线平行的直线,则所画直线必与地面垂直。然后师生互动,共同完成性质定理的确认与证
明,并归纳性质定理:
两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直。
(五)巩固深化、发展思维
思索1、设平面aJ•平面B,点P在平面a内,过点P作平面B的垂线a,直线a与平面a具有什
么位置关系?
(答:直线a必在平面a内)
思索2、已知平面a、B和直线a,若a_LB,a_LB,ay则直线a与平面a具有什么位置
关系?
(六)归纳小结,课后巩固
小结:(1)请归纳一下本节学习了什么性质定理,其内容各是什么?
(2)类比两特性质定理,你发觉它们之间有何联系?
作业:(1)求证:两条异面直线不能同时和一个平面垂直;
(2)求证:三个两两垂直的平面的交线两两垂直。
(七)教学反思:
率常小给
一、教学目标
1、学问与技能
(1)使学生驾驭学问结构与联系,进一步巩固、深化所学学问;
(2)通过对学问的梳理,提高学生的归纳学问和综合运用学问的实力。
2、过程与方法
利用框图对本章学问进行系统的小结,直观、简明再现所学学问,化抽象学习为直观学习,易
于识记;同时凸现数学学问的发展和联系。
3情态与价值
学生通过学问的整合、梳理,理睬空间点、线面间的位置关系与其相互联系,进一步培育学生
的空间想象实力和解决问题实力。
二、教学重点、难点
重点:各学问点间的网络关系;
难点:在空间如何实现平行关系、垂直关系、垂直与平行关系之间的转化。
三、教学设计
(-)学问回顾,整体相识
1、本章学问回顾
(1)空间点、线、面间的位置关系;
(2)直线、平面平行的判定与性质;
(3)直线、平面垂直的判定与性质。
2、本章学问结构框图
公理1——判定直线是否在平面内的依据;----------------
公理2——供应确定平面最基本的依据;
公理3——判定两个平面交线位置的依据;
公理4一一判定空间直线之间平行的依据。
2、空间问题解决的重要思想方法:化空间问题为平面问题;
3、空间平行、垂直之间的转化与联系:
直线与直线平行直线与平面平行平面与平面平行
直线与直线垂直只世界的两种直线与平面垂直:目成,缺一不行。平面与平面垂直
_________________;巩固________________
1、P.82A组第1题
本题主要是公理1、2学问的巩固与应用。
2、P.82A组第8题
本题主要是直线与平面垂直的判定与性质的学问巩固与应用。
(四)课后作业
1、阅读本章学问内容,从中体会学问的发展过程,理睬问题解决的思想方法;
2、P.83B组第2题。
(五)教学反思:
第三章直线与方程
直线的T顷斜角和斜率
教学目标:
学问与技能
(1)正确理解直线的倾斜角和斜率的概念.
(2)理解直线的倾斜角的唯一性.
(3)理解直线的斜率的存在性.
(4)斜率公式的推导过程,驾驭过两点的直线的斜率公式.
情感看法与价值观
(1)通过直线的倾斜角概念的引入学习和直线倾斜角与斜率关系的揭示,培育学生视察、探究实
力,运用数学语言表达实力,数学沟通与评价实力.
(2)通过斜率概念的建立和斜率公式的推导,帮助学生进一步理解数形结合思想,培育学生树立辩证
统一的观点,培育学生形成严谨的科学看法和求简的数学精神.
重点与难点:直线的倾斜角、斜率的概念和公式.
教学用具:计算机
教学方法:启发、引导、探讨.
教学过程:
(-)直线的倾斜角的概念
我们知道,经过两点有且只有(确定)一条直线.则,经过一点P的直线1的位置能确定吗如图,
过一点P可以作多数多条直线,…易见,答案是否定的.这些直线有什么联系呢
(1)它们都经过点P.(2)它们的‘倾斜程度'不同.怎样描述这种‘倾斜程度'的不同
引入直线的倾斜角的概念:
当直线1与x轴相交时,取x轴作为基准,x轴正向与直线1向上方向之间所成的角a叫做直线1
的便斜用.特殊地,当直线1与x轴平行或重合时,规定a=0。.
问:倾斜角a的取值范围是什么0。<180".
当直线1与x轴垂直时,a=90。.
因为平面直角坐标系内的每一条直线都有确定的倾斜程度,引入直线的倾斜角之后,我们就可以用倾
斜角a来表示平面直角坐标系内的每一条直线的倾斜程度.
如图,直线a〃b〃c,则它们
的倾斜角a相等吗答案是确定的.所以一个倾斜角a不能确定一条直线.
确定平面直角坐标系内的一条直线位置的几何要素:一个点P
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度文化创意产业项目聘用设计师的独家合同
- 中国酶工程药物行业市场全景监测及投资战略研究报告
- 2025年中国风电设备行业市场前景预测及投资战略研究报告
- 2025年度农村个人地基使用权转让与农村土地资源整合开发合作协议
- 南京市2025年度房屋托管服务合作协议
- 全球及中国高压增强热塑性塑料管行业深度研究报告
- 2025年贴布绣制品项目投资可行性研究分析报告
- 2025年度抵押车买卖合同车辆保险续保及理赔服务合同
- 二零二五年度苗圃项目股权转让与投资合作协议
- 电力研究报告-电力产业规划专项研究报告(2025年)
- 《如何做美篇》课件
- “一带一路”视域下印度尼西亚中资企业所得税返还案例解析
- 咨询服务协议书范本:教育咨询和培训
- 洁净空调负荷计算表格
- 泸州食品安全承诺书
- 《机械基础》课程标准
- 大理市房地产市场调研报告
- 仓库固定资产管理规范
- 企业关停方案
- 阴道分泌物检验
- 企业安全文化建设导则
评论
0/150
提交评论