




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Chapter9d’AlembertPrincipleandVirtualDisplacementPrinciple§9.4Constraint,virtualdisplacement,virtualwork§9.5Principleofvirtualdisplacement§9.1InertialForceandd’AlembertPrincipleofaParticle§9.2d’AlembertPrincipleofaSystemofParticles§9.3ReductionofaSystemofInertialForcesofaRigidBodyMainContentsInthischapter,wewilldiscussd’Alembertprinciple,itprovidesageneralmethodtosolvethekineticproblemofaparticleandasystemofparticles,themethodisthatthemethodsofstaticsareappliedtosolvekineticsproblems,thuskineticproblemscanbetransformedformallytoanequivalentstaticproblems,theycanbesolvedbytheoremofequilibrium.Thusthismethodiscalledthekinetic-staticmethod.Applyingthekinetic-staticmethodwecandeterminethemotion,forexampleaccelerationangularacceleration;canalsodeterminetheforce.D’Alembert’sPrincipleApplyingNewtonsecondlaw,wehave§9.1Inertialforceandd’AlembertprincipleofaparticleAssumingmassofaparticleis,accelerateis,activeforceactingontheparticleis,constraintforceis,showninfigure.AboveequationistransposedandwrittenasMaking
Wehave
hasthedimensionofforce,iscalledtheinertialforceofparticle:itsmagnitudeisequaltotheproductofmassandaccelerationofparticle,itsdirectioniscontrarytothedirectionofparticleacceleration.Theactiveforce,constraintforceandvirtualinertialforceactingontheparticlecomposedformallyequilibratedsystemofforces,thisisd’Alembertprincipleofaparticle.OlθExamole
9-1§9.1Inertialforceandd’AlembertprincipleofaparticleShowninfigure,aconicalpendulum.Aballofmassm=0.1kgtiesaropeoflengthl=0.3m,oneendoftheropetiestoafixedpointO,andtheanglewiththeleadstraightlineisθ=60º.Ifthesmallballmakeuniformcircularmotioninthehorizontalplane,determinethevelocityoftheballvandthemagnitudeoftensionFoftherope.OlθenetebmgF*Example9-1FSolution:choosethesmallballastheparticletostudy.Theparticlemakesuniformcircularmotion,onlyhavenormalacceleration,theforcesactingontheparticleincludesgravitymg,pullingforceFofropeandnormalinertialforceF*,showninfigure.Accordingtod’Alembertprinciple,thethreeforcescomposedformallyequilibratedsystem,thatisTakingtheprojectionformulaofaboveequationinnaturalaxis,wehave:§9.1InertialforceandD’Alembert’sprincipleofaparticleExample
9-1OlθenetebmgF*FSolutionis:§9.1InertialforceandD’Alembert’sprincipleofaparticleAssumingssystemofparticlescomposedofnparticles,massofanyparticleiis,
accelerationis,allforcesactingontheparticleisdividedintoresultantforceofactiveforce,resultantforceofconstraintforce,theparticleisimaginarilyplusitsinertialforce,accordingtod’Alembertprincipleofaparticle,wehaveAboveequationshows,theactiveforce,constraintforceanditsinertialforceactingoneveryparticleofthesystemcomposedformallyequilibratedsystemofforces,thisisd’Alembertprincipleofasystemofparticles.Thisshows,externalforce,internalforceanditsinertialforceactingoneveryparticleofthesystemcomposedformallyequilibratedsystemofforces.§9.1InertialforceandD’Alembert’sprincipleofaparticleAllforcesactingtheithparticlearedividedintoresultantforceofexternalforce,
resultantforceofinternalforce,andaboveequationcanbewrittenasBystaticsweknowthatnecessaryandsufficientconditionofequilibriumofspacialgeneralforcesystemisthattheprincipalvectoroftheforcesystemandtheprincipalmomentaboutanypointisequaltozero,thatisAboveequationshows,externalforceactingonsystemofparticlesandinertialforcevirtualaddingoneveryparticlecomposeformallyequilibratedsystemofforces,thisisanotherrepresentationofd’Alembertprincipleofasystemofparticles.§9.2D’Alembert’sprincipleofasystemofparticlesSinceInternalforcesofthesystemofparticlesalwaysexistinpairs
,
andisequalinmagnitudeandoppositeindirection,andcollinear,
thenwehaveand
,henceInstatics,
iscalledtheprincipalvector,
istheprincipalmomentaboutpointO,nowiscalledtheprincipalvectorofinertialforcesystem,
istheprincipalmomentofinertialforcesystemaboutpointO.AccordingtoD’Alembert’sprincipleofasystemofparticles,thisisformallyaequilibratedsystemofforces,
hencewecanapplymethodofstaticsforsolvingvariousequilibratedforcesystemtosolvekineticproblem.§9.2D’Alembert’sprincipleofasystemofparticlesOABrExample
9-2Showninfigure,theradiusofpulleyisr,massmuniformlydistributedintherim,canrotatearoundthehorizontalaxis.Bothendsofthesoftropeacrosstherimhangheavybodyofmass
m1andm2,andm1>m2.Neglectweightofrope,thereisnorelativeslidingbetweenropeandpulley,neglectbearingfriction.Determinetheaccelerationofheavybody.§9.2D’Alembert’sprincipleofasystemofparticlesOABryExample
9-2aam1gmgm2gFNSolution:choosepulleyandthetwoheavybodiesasthesystemofparticlestobestudied.Theexternalforcesactingonthesystemincludegravitym1g,m2g,mgandbearingconstraintforces
FN.Eachparticleofthesystemisvirtuallyaddedinertialforce,wecanapplyd’Alembertprinciple.Weknowm1>m2,thenthedirectionofaccelerationaofheavybodyshowninfigure.Thedirectionofinertialforceofheavybodyisoppositetothedirectionofaccelerationa,magnitudearerespectively:§9.2D’Alembert’sprincipleofasystemofparticlesorExample
9-2OABraam1gmgm2gFNymiApplyingequationofmomentofforceaboutrotatingaxis,weobtain
§9.2D’Alembert’sprincipleofasystemofparticlesMassofeachpointonpulleyedgeismi,magnitudeoftangentialinertialforceis,directionisalongtherimtangentline,pointasshowninfigure.Whenthereisnorelativeslidingbetweenropeandpulley,;magnitudeofnormalinertialforceis,directionisalongradiusanddeparturefromthecenter.
sinceSolutionisExample
9-2OABraam1gmgm2gFNymi§9.2D’Alembert’sprincipleofasystemofparticles§9.3ReductionofasystemofinertialforcesofarigidbodyThisexpressionisestablishedaboutanymotionofanysystemofparticles,alsoappliestotherigidbodythatmakestranslation,fixedaxisrotationandplanemotion.Inthefollowingweintroducereductionofasystemofinertialforcesinthreecommoncases.Applyingd’Alembertprincipleofasystemofparticlestosolvekineticproblemofthesystem,
eachparticleofthesystemisaddeditsinertialforce,
theseinertialforcesformasystemofforces,
whichiscalledinertialforcesystem.Ifusingsimplifiedtheoryofforcesysteminstatics,
todeterminetheprincipalvectorandtheprincipalmomentintheinertialforcesystem,
substituteinertialforceaddedtoeachparticlewhenwespecificallysolve,
itwillbringconveniencetosolveproblem.Inthefollowingweonlydiscussreductionofinertialforcesystemintranslationofrigidbody,
fixedaxisrotationandplanemotion.representstheprinciplevectorofinertialforcesystem,
accordingtoandtheoremofmotionofmasscenter,
wehave1.RigidbodyintranslationRigidbodyisintranslation,
ateveryinstantaccelerationofanyparticleiinrigidbodyisthesameasaccelerationofmasscenter,
here,
inertialforcesystemofrigidbodydistributesinfigure,
arbitrarilychooseapointOassimplifiedcenter,
representstheprincipalmoment,
wehaveWhenrigidbodyisintranslation,theprinciplemomentofinertialforceaboutarbitrarypointisgenerallynotequaltozero.Ifchoosemasscenterassimplifiedcenter,itsprincipalmomentiszero,simplifiedasaresultantforce.Henceweconclude:inertialforcesystemoftranslationalrigidbodycanbesimplifiedtoresultantforcethroughmasscenter,itsmagnitudeisequaltotheproductofmassofrigidbodyandacceleration,thedirectionofresultantforceisoppositetothedirectionofacceleration.§9.3ReductionofasystemofinertialforcesofarigidbodyWhere,
isradiusvectorfrommasscenterCtosimplifiedcenterO,theprinciplemomentisgenerallynotequaltozero.IfchoosemasscenterCassimplifiedcenter,representtheprincipalmoment,then,
wehave2.Fixedaxisrotationofarigidbody§9.3ReductionofasystemofinertialforcesofarigidbodyInertialforceofparticlecanbedividedintotangentialinertialforceandnormalinertialforce
,andtheirdirectionsshowninfigure,magnitudearerespectivelyWhenrigidbodyisinfixedaxisrotation,assumingangularvelocityofrigidbodyis,angularaccelerationis,massofanyparticleinrigidbodyis,thedistancetorotatingaxisis,theninertialforceofanyparticleinrigidbodyis.Forsimplicity,arbitrarilychooseapointO
onrotatingaxisassimplifiedcenter,establishrectangularcoordinatesystemshowninfigure,coordinatesoftheparticleisIftherigidbodyhasaplaneofmasssymmetryandtheplaneisverticaltotherotatingaxisz,andthesimplifiedcenter
ischosentobetheintersectionpointofthisplanewiththerotatingaxisz,thenMomentofinertialforcesystemaboutaxisz
is
Sincenormalinertialforceofeachparticlepassthroughaxisz,
wehave§9.3Reductionofasystemofinertialforcesofarigidbody3.Rigidbodyinplanemotion(paralleltothemasssymmetryplane)§9.3ReductionofasystemofinertialforcesofarigidbodyInengineering,rigidbodyinplanemotionoftenhasmasssymmetryplane,andparalleltotheplanemotion,nowonlyinthiscasewediscussreductionofasystemofinertialforces.Similartorotationofrigidbodyaroundfixedaxis,rigidbodyisinplanemotion,spaceforcesystemcomposedofinertialforcesofeachparticle,canbesimplifiedtoplaneforcesysteminthemasssymmetryplane.Chooseplanefigureinthemasssymmetrypaneasshowninfigure.Bykinematicsweknow,motionofplanefigurecanbedividedintotranslationwiththebasepointandrotationaroundthebasepoint.NowchoosemasscenterCasthebasepoint,assumingtheaccelerationofmasscenteris,angularvelocityofrotationaroundmasscenteris,angularaccelerationis,similartorotationofrigidbodyaroundfixedaxis,nowtheprincipalmomentofreductionofasystemofinertialforcestomasscenterCisWhere
isthemassmomentofinertiaoftherigidbodyabouttheaxiswhichpassesthroughmasscenterandisverticaltothemasssymmetryplane.§9.3ReductionofasystemofinertialforcesofarigidbodySoweconclude:
rigidbodyhavethemasssymmetryplane,
whenmovingparalleltotheplane,
asystemofinertialforcesofrigidbodyisreducedtoaforceandacoupleintheplane.Theforcepassesthroughmasscenter,
itsmagnitudeisequaltotheproductofmassofrigidbodyandaccelerationofmasscenter,
itsdirectionisoppositetothedirectionofaccelerationofmasscenter;
momentofthecoupleisequaltotheproductofthemassmomentofinertiaoftherigidbodyabouttheaxiswhichpassesthroughmasscenterandisverticaltothemasssymmetryplaneandangularacceleration,
rotatingdirectionisoppositetoangularacceleration.xyωm1gm2gCOhφExample
9-3§9.3ReductionofasystemofinertialforcesofarigidbodyShowninfigure,massofstatorofelectricmotorism1,mountedonahorizontalbase.ThedistancebetweenrotatingaxisOandhorizontalplaneish,and
massofrotorism2,itsmasscenterisC,eccentricdistanceOC=e,whenmotionbegins,masscenterCisatthelowestposition.Rotorrotateswithconstantangularvelocityω,determinetheconstraintforceofthebaseactingontheelectricmotor.Example
9-3xyωm1gm2gCOhφFyFxMAF*Solution:choosethewholemotorasobjecttobestudied.Theforcesincludegravitym1gandm2g,constraintforceofbaseandgroundscrewactingontheelectricmotorsimplifiedtopointAasacoupleMandaforceF(showninfigureFxandFy).Thesystemofparticlesisaddedtoinertialforce.RotoruniformlyrotatesaboutfixedaxisOwithangularvelocityω,thesystemofinertialforceisreducedaforcethroughpointO,magnitudeisItsdirectionisoppositetoaccelerationaCofmasscenterC.SinceaCisalongOCandpointstocenterO,
F*isalongOCanddepartsfrompointO.§9.3ReductionofasystemofinertialforcesofarigidbodyExample
9-3xyωm1gm2gCOhφFyFxMAF*Accordingtod’Alembertprinciple,activeforce,constraintforceandinertialforceactingonthesystemofparticlesformallycomposeequilibriumforcesystem,wecanwriteequilibriumequation:Sincerotoruniformlyrotates,φ=ωt
,substitutingitintoaboveequations,weobtain:§9.3ReductionofasystemofinertialforcesofarigidbodymAgmgFABCExample
9-4MassofhomogeneousdiscismA,radiusisr.Lengthofslenderrodisl=2r,massism.PointAofrodendhingedsmoothlytowheelcenter,showninfigure.IfpointAsufferedahorizontalpullingforceF,makewheelrollalonghorizontalplane.DeterminethemagnitudeofforceF,whenendBofrodjustlefttheground.Inordertoensurepurerolling,determinecoefficientofstaticslidingfrictionbetweenthewheelandtheground.§9.3ReductionofasystemofinertialforcesofarigidbodyBCmgAF*CFAxFAyamAgmgFABCExample
9-4F*AF*CM*Accordingtokinetic-staticmethod,wewriteequationSolutionis
§9.3ReductionofasystemofinertialforcesofarigidbodySolution:whenslenderrodleftthegrounditisstillintranslation,andconstraintforceofgroundisequaltozero,assumingitsaccelerationisa.Chooserodasobjecttobestudied,theforcesactingonrodandaddinginertialforceasshowninfigure,where
Theforcesactingonthewholesystemandaddinginertialforcesasshowninfigure,whereAccordingtoequationweobtainmAgmgFABCF*AF*CM*FNFsExample
9-4Frictionofground
Inordertodeterminefriction,choosethewheelasobjecttobestudied.Solutionis
§9.3ReductionofasystemofinertialforcesofarigidbodyApplyingequationweobtainAmAgFFNF*AM*FsExample
9-4Thus,coefficientoffrictionofground§9.3ReductionofasystemofinertialforcesofarigidbodyAFNF*AF*CmAgmgFBCM*FsThenchoosethewholesystemasobjecttobestudied,
byequation,weobtainmAgFAFNF*AM*FsPrincipleofvirtualdisplacement:§9.4Constraint,virtualdisplacement,virtualworkToestablishtheequilibriumconditionsforthesystemofmasspointsindependentoftheNewtonianmechanicssystem.Newtoniansystemofmechanics:Vectormechanics,whichdescribesmechanicalquantitiesthatarerepresentedbyvectors,suchasvectordiameter,velocity,acceleration,angularvelocityandangularacceleration.Analyticalmechanicssystem:Scalarmechanics,whichdescribesphysicalquantitiesasscalars,suchasgeneralizedcoordinates,energyandwork.Theprincipleofvirtualdisplacementisbasedonanalyticalmechanicstoestablishthesufficientconditionsfortheequilibriumofthesystem,whichhasawidersignificancethantheequilibriumconditionsestablishedbyNewtonianmechanics.1.Constraintsandtheirclassification(1)Therestrictionsonthemotionofanobjectarecalledconstraints.Expressedasamathematicalequation,whichiscalledconstraintequation.Forexample:xφOyM(x,y)ιPlanependulumconstraintequation§9.4Constraint,virtualdisplacement,virtualwork2.Classificationofconstraints§9.4Constraint,virtualdisplacement,virtualworkGeometricconstraint:restrictonlythegeometricpositionofaparticle.Motionconstraint:theconstraintequationcontainsthederivativeoftheparticlecoordinates(withrespecttotime).Steadyconstraint:theconstraintisindependentoftime,i.e.,theconstraintequationdoesnotcontaintimet.Unsteadyconstraint:
theconstraintisdependentoftime,i.e.,thetimetisincludedintheconstraintequation.Holonomicconstraint:
includinggeometricconstraintsandmotionconstraintsthatcanbereducedtogeometricconstraints.Nonholonomicconstraint:amotionconstraintcannotbereducedtoageometricconstraint.3.
VirtualdisplacementAtacertaininstant,anyinfinitesimaldisplacementthattheparticlesystemmayachieveundertheconditionsallowedbyconstraintsiscalledthevirtualdisplacementoftheparticlesystem(atthatinstant).Thevirtualdisplacementcanbeeitheralineardisplacementoranangulardisplacement.Usually,thevariationalsymbolδisusedtorepresentvirtualdisplacement.Inthefollowingtwoexamples,δφ,δrAand
δrBareallvirtualdisplacement.xφOyMδφδs(+)xBAOyMFδrAδrBδφ§9.4Constraint,virtualdisplacement,virtualwork4.Differencebetweenvirtualdisplacementandrealdisplacement
Realdisplacementisthetruedisplacementachievedbyaparticlesystemwithi
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025劳动合同期限与试用期条款的关联性分析
- 车辆使用权转让协议书范本
- 离婚后子女抚养协议
- 扶贫项目资金协议书
- 2025年03月江苏无锡经济开发区事业单位公开招聘工作人员8人笔试历年典型考题(历年真题考点)解题思路附带答案详解
- 2025年03月山东华宇工学院硕士研究生公开招聘(60人)笔试历年典型考题(历年真题考点)解题思路附带答案详解
- 2025年03月国家统计局鸡西调查队公开招聘公益性岗位人员1人笔试历年典型考题(历年真题考点)解题思路附带答案详解
- 2025年上海市15区高三语文二模试题汇编之现代文一(学生版)
- 天津市蓟州等部分区2025届高中毕业班第二次模拟(语文试题文)试卷含解析
- 湖南艺术职业学院《统计软件与应用》2023-2024学年第一学期期末试卷
- 最新军事英语基本词汇和表达(英汉对照)
- 张骞出使西域课本剧
- 《北京市市级投资基金绩效评价管理暂行办法》
- 100道凑十法练习习题
- 人教版初中阶段语文古诗词理解性背诵默写汇编
- 内蒙古高中毕业生学籍表毕业生登记表学年评语表成绩单身体健康检查表完整版高中档案文件
- 光电效应和普朗克常数测定实验数据表格
- 重力式桥台计算程序表格
- (完整word版)清表施工方案
- 污水池防腐施工方案改
- 公务用车派车单、车辆维修保养申请单(修订版)
评论
0/150
提交评论