![吉林省蛟河市朝鲜族中学2022年数学高三第一学期期末考试模拟试题含解析_第1页](http://file4.renrendoc.com/view12/M05/33/0E/wKhkGWaDQkmAVFw4AAIa1DctvRE353.jpg)
![吉林省蛟河市朝鲜族中学2022年数学高三第一学期期末考试模拟试题含解析_第2页](http://file4.renrendoc.com/view12/M05/33/0E/wKhkGWaDQkmAVFw4AAIa1DctvRE3532.jpg)
![吉林省蛟河市朝鲜族中学2022年数学高三第一学期期末考试模拟试题含解析_第3页](http://file4.renrendoc.com/view12/M05/33/0E/wKhkGWaDQkmAVFw4AAIa1DctvRE3533.jpg)
![吉林省蛟河市朝鲜族中学2022年数学高三第一学期期末考试模拟试题含解析_第4页](http://file4.renrendoc.com/view12/M05/33/0E/wKhkGWaDQkmAVFw4AAIa1DctvRE3534.jpg)
![吉林省蛟河市朝鲜族中学2022年数学高三第一学期期末考试模拟试题含解析_第5页](http://file4.renrendoc.com/view12/M05/33/0E/wKhkGWaDQkmAVFw4AAIa1DctvRE3535.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高三上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.某歌手大赛进行电视直播,比赛现场有名特约嘉宾给每位参赛选手评分,场内外的观众可以通过网络平台给每位参赛选手评分.某选手参加比赛后,现场嘉宾的评分情况如下表,场内外共有数万名观众参与了评分,组织方将观众评分按照,,分组,绘成频率分布直方图如下:嘉宾评分嘉宾评分的平均数为,场内外的观众评分的平均数为,所有嘉宾与场内外的观众评分的平均数为,则下列选项正确的是()A. B. C. D.2.函数的部分图像如图所示,若,点的坐标为,若将函数向右平移个单位后函数图像关于轴对称,则的最小值为()A. B. C. D.3.已知函数.设,若对任意不相等的正数,,恒有,则实数a的取值范围是()A. B.C. D.4.袋中装有标号为1,2,3,4,5,6且大小相同的6个小球,从袋子中一次性摸出两个球,记下号码并放回,如果两个号码的和是3的倍数,则获奖,若有5人参与摸球,则恰好2人获奖的概率是()A. B. C. D.5.关于函数,有下列三个结论:①是的一个周期;②在上单调递增;③的值域为.则上述结论中,正确的个数为()A. B. C. D.6.如果实数满足条件,那么的最大值为()A. B. C. D.7.复数().A. B. C. D.8.如图,正方体中,,,,分别为棱、、、的中点,则下列各直线中,不与平面平行的是()A.直线 B.直线 C.直线 D.直线9.已知向量,(其中为实数),则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件10.等比数列若则()A.±6 B.6 C.-6 D.11.已知双曲线的左,右焦点分别为,O为坐标原点,P为双曲线在第一象限上的点,直线PO,分别交双曲线C的左,右支于另一点,且,则双曲线的离心率为()A. B.3 C.2 D.12.过双曲线的左焦点作直线交双曲线的两天渐近线于,两点,若为线段的中点,且(为坐标原点),则双曲线的离心率为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.变量满足约束条件,则目标函数的最大值是____.14.已知双曲线(,)的左,右焦点分别为,,过点的直线与双曲线的左,右两支分别交于,两点,若,,则双曲线的离心率为__________.15.设,分别是定义在上的奇函数和偶函数,且,则_________16.已知数列满足对任意,若,则数列的通项公式________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)求不等式的解集;(2)若函数的定义域为,求实数的取值范围.18.(12分)在中,角,,所对的边分别为,,,已知,,角为锐角,的面积为.(1)求角的大小;(2)求的值.19.(12分)已知是抛物线的焦点,点在轴上,为坐标原点,且满足,经过点且垂直于轴的直线与抛物线交于、两点,且.(1)求抛物线的方程;(2)直线与抛物线交于、两点,若,求点到直线的最大距离.20.(12分)已知函数,,设.(1)当时,求函数的单调区间;(2)设方程(其中为常数)的两根分别为,,证明:.(注:是的导函数)21.(12分)在平面直角坐标系中,曲线,曲线的参数方程为(为参数).以坐标原点为极点,轴的正半轴为极轴建立极坐标系.(1)求曲线、的极坐标方程;(2)在极坐标系中,射线与曲线,分别交于、两点(异于极点),定点,求的面积22.(10分)已知动圆Q经过定点,且与定直线相切(其中a为常数,且).记动圆圆心Q的轨迹为曲线C.(1)求C的方程,并说明C是什么曲线?(2)设点P的坐标为,过点P作曲线C的切线,切点为A,若过点P的直线m与曲线C交于M,N两点,则是否存在直线m,使得?若存在,求出直线m斜率的取值范围;若不存在,请说明理由.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】
计算出、,进而可得出结论.【详解】由表格中的数据可知,,由频率分布直方图可知,,则,由于场外有数万名观众,所以,.故选:B.【点睛】本题考查平均数的大小比较,涉及平均数公式以及频率分布直方图中平均数的计算,考查计算能力,属于基础题.2、B【解析】
根据图象以及题中所给的条件,求出和,即可求得的解析式,再通过平移变换函数图象关于轴对称,求得的最小值.【详解】由于,函数最高点与最低点的高度差为,所以函数的半个周期,所以,又,,则有,可得,所以,将函数向右平移个单位后函数图像关于轴对称,即平移后为偶函数,所以的最小值为1,故选:B.【点睛】该题主要考查三角函数的图象和性质,根据图象求出函数的解析式是解决该题的关键,要求熟练掌握函数图象之间的变换关系,属于简单题目.3、D【解析】
求解的导函数,研究其单调性,对任意不相等的正数,构造新函数,讨论其单调性即可求解.【详解】的定义域为,,当时,,故在单调递减;不妨设,而,知在单调递减,从而对任意、,恒有,即,,,令,则,原不等式等价于在单调递减,即,从而,因为,所以实数a的取值范围是故选:D.【点睛】此题考查含参函数研究单调性问题,根据参数范围化简后构造新函数转换为含参恒成立问题,属于一般性题目.4、C【解析】
先确定摸一次中奖的概率,5个人摸奖,相当于发生5次试验,根据每一次发生的概率,利用独立重复试验的公式得到结果.【详解】从6个球中摸出2个,共有种结果,两个球的号码之和是3的倍数,共有摸一次中奖的概率是,5个人摸奖,相当于发生5次试验,且每一次发生的概率是,有5人参与摸奖,恰好有2人获奖的概率是,故选:.【点睛】本题主要考查了次独立重复试验中恰好发生次的概率,考查独立重复试验的概率,解题时主要是看清摸奖5次,相当于做了5次独立重复试验,利用公式做出结果,属于中档题.5、B【解析】
利用三角函数的性质,逐个判断即可求出.【详解】①因为,所以是的一个周期,①正确;②因为,,所以在上不单调递增,②错误;③因为,所以是偶函数,又是的一个周期,所以可以只考虑时,的值域.当时,,在上单调递增,所以,的值域为,③错误;综上,正确的个数只有一个,故选B.【点睛】本题主要考查三角函数的性质应用.6、B【解析】
解:当直线过点时,最大,故选B7、A【解析】试题分析:,故选A.【考点】复数运算【名师点睛】复数代数形式的四则运算的法则是进行复数运算的理论依据,加减运算类似于多项式的合并同类项,乘法法则类似于多项式的乘法法则,除法运算则先将除式写成分式的形式,再将分母实数化.8、C【解析】
充分利用正方体的几何特征,利用线面平行的判定定理,根据判断A的正误.根据,判断B的正误.根据与相交,判断C的正误.根据,判断D的正误.【详解】在正方体中,因为,所以平面,故A正确.因为,所以,所以平面故B正确.因为,所以平面,故D正确.因为与相交,所以与平面相交,故C错误.故选:C【点睛】本题主要考查正方体的几何特征,线面平行的判定定理,还考查了推理论证的能力,属中档题.9、A【解析】
结合向量垂直的坐标表示,将两个条件相互推导,根据能否推导的情况判断出充分、必要条件.【详解】由,则,所以;而当,则,解得或.所以“”是“”的充分不必要条件.故选:A【点睛】本小题考查平面向量的运算,向量垂直,充要条件等基础知识;考查运算求解能力,推理论证能力,应用意识.10、B【解析】
根据等比中项性质代入可得解,由等比数列项的性质确定值即可.【详解】由等比数列中等比中项性质可知,,所以,而由等比数列性质可知奇数项符号相同,所以,故选:B.【点睛】本题考查了等比数列中等比中项的简单应用,注意项的符号特征,属于基础题.11、D【解析】
本道题结合双曲线的性质以及余弦定理,建立关于a与c的等式,计算离心率,即可.【详解】结合题意,绘图,结合双曲线性质可以得到PO=MO,而,结合四边形对角线平分,可得四边形为平行四边形,结合,故对三角形运用余弦定理,得到,而结合,可得,,代入上式子中,得到,结合离心率满足,即可得出,故选D.【点睛】本道题考查了余弦定理以及双曲线的性质,难度偏难.12、C【解析】由题意可得双曲线的渐近线的方程为.∵为线段的中点,∴,则为等腰三角形.∴由双曲线的的渐近线的性质可得∴∴,即.∴双曲线的离心率为故选C.点睛:本题考查了椭圆和双曲线的定义和性质,考查了离心率的求解,同时涉及到椭圆的定义和双曲线的定义及三角形的三边的关系应用,对于求解曲线的离心率(或离心率的取值范围),常见有两种方法:①求出,代入公式;②只需要根据一个条件得到关于的齐次式,转化为的齐次式,然后转化为关于的方程(不等式),解方程(不等式),即可得(的取值范围).二、填空题:本题共4小题,每小题5分,共20分。13、5【解析】
分析:画出可行域,平移直线,当直线经过时,可得有最大值.详解:画出束条件表示的可行性,如图,由可得,可得,目标函数变形为,平移直线,当直线经过时,可得有最大值,故答案为.点睛:本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的定点就是最优解);(3)将最优解坐标代入目标函数求出最值.14、【解析】
设,由双曲线的定义得出:,由得为等腰三角形,设,根据,可求出,得出,再结合焦点三角形,利用余弦定理:求出和的关系,即可得出离心率.【详解】解:设,由双曲线的定义得出:,,由图可知:,又,即,则,为等腰三角形,,设,,则,,即,解得:,则,,解得:,,解得:,,在中,由余弦定理得:,即:,解得:,即.故答案为:.【点睛】本题考查双曲线的定义的应用,以及余弦定理的应用,求双曲线离心率.15、1【解析】
令,结合函数的奇偶性,求得,即可求解的值,得到答案.【详解】由题意,函数分别是上的奇函数和偶函数,且,令,可得,所以.故答案为:1.【点睛】本题主要考查了函数奇偶性的应用,其中解答中熟记函数的奇偶性,合理赋值求解是解答的关键,着重考查了推理与运算能力,属于基础题.16、【解析】
由可得,利用等比数列的通项公式可得,再利用累加法求和与等比数列的求和公式,即可得出结论.【详解】由,得,数列是等比数列,首项为2,公比为2,,,,,满足上式,.故答案为:.【点睛】本题考查数列的通项公式,递推公式转化为等比数列是解题的关键,利用累加法求通项公式,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】
(1)分类讨论,去掉绝对值,化为与之等价的三个不等式组,求得每个不等式组的解集,再取并集即可.(2)要使函数的定义域为R,只要的最小值大于0即可,根据绝对值不等式的性质求得最小值即可得到答案.【详解】(1)不等式或或,解得或,即x>0,所以原不等式的解集为.(2)要使函数的定义域为R,只要的最小值大于0即可,又,当且仅当时取等,只需最小值,即.所以实数a的取值范围是.【点睛】本题考查绝对值不等式的解法,考查利用绝对值三角不等式求最值,属基础题.18、(1);(2)7.【解析】分析:(1)由三角形面积公式和已知条件求得sinA的值,进而求得A;(2)利用余弦定理公式和(1)中求得的A求得a.详解:(1)∵,∴,∵为锐角,∴;(2)由余弦定理得:.点睛:本题主要考查正弦定理边角互化及余弦定理的应用与特殊角的三角函数,属于简单题.对余弦定理一定要熟记两种形式:(1);(2),同时还要熟练掌握运用两种形式的条件.另外,在解与三角形、三角函数有关的问题时,还需要记住等特殊角的三角函数值,以便在解题中直接应用.19、(1);(2).【解析】
(1)求得点的坐标,可得出直线的方程,与抛物线的方程联立,结合求出正实数的值,进而可得出抛物线的方程;(2)设点,,设的方程为,将直线的方程与抛物线的方程联立,列出韦达定理,结合求得的值,可得出直线所过定点的坐标,由此可得出点到直线的最大距离.【详解】(1)易知点,又,所以点,则直线的方程为.联立,解得或,所以.故抛物线的方程为;(2)设的方程为,联立有,设点,,则,所以.所以,解得.所以直线的方程为,恒过点.又点,故当直线与轴垂直时,点到直线的最大距离为.【点睛】本题考查抛物线方程的求解,同时也考查了抛物线中最值问题的求解,涉及韦达定理设而不求法的应用,考查运算求解能力,属于中等题.20、(1)在上单调递增,在上单调递减.(2)见解析【解析】
(1)求出导函数,由确定增区间,由确定减区间;(2)求出含有参数的,再求出,由的两根是,得,计算,代入后可得结论.【详解】解:,函数的定义域为,.(1)当时,,由得,由得,故函数在上单
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 办公项目总结与未来展望报告
- 地坪浇筑劳务分包合同
- 独院买卖合同协议书
- 砖砌体工程施工合同协议书
- 高效办公流程优化解决方案
- 媒体资源共享合作框架协议
- 制作细胞的结构模型(第1课时)教学设计-2024-2025学年苏科版生物七年级上册
- 写字楼照明设计施工方案
- 阿拉善工地降水井施工方案
- 第10课 保持身心健康2024-2025学年新教材七年级道德与法治上册同步教学设计(统编版2024)
- 2024年循环水操作工(中级)职业鉴定理论考试题库((含答案))
- 《动物病原微生物菌(毒)种保藏管理实施细则》等4个技术规范性文件
- 2024至2030年中国壁球行业调查及市场前景咨询报告
- GB/T 44464-2024汽车数据通用要求
- 危重患者的体位管理
- 西南师大版小学数学三年级下册教材分析
- 人教版(新起点)小学英语二年级下册教案(全册)
- GB 1002-2024家用和类似用途单相插头插座型式、基本参数和尺寸
- 中医备案诊所污水、污物、粪便处理方案及周边环境情况说明
- 人教版五年级上册小数乘除法竖式计算题200道及答案
- 《房地产开发与经营》全套教学课件
评论
0/150
提交评论