版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
上海市延安实验初级中学2025届数学九上期末学业质量监测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.如果两个相似多边形的面积比为4:9,那么它们的周长比为()A.: B.2:3 C.4:9 D.16:812.如图,抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=1,与x轴交于A、B(-1,0),与y轴交于C.下列结论错误的是()A.二次函数的最大值为a+b+c B.4a-2b+c﹤0C.当y>0时,-1﹤x﹤3 D.方程ax2+bx+c=-2解的情况可能是无实数解,或一个解,或二个解.3.抛物线y=(x﹣1)2﹣2的顶点是()A.(1,﹣2) B.(﹣1,2) C.(1,2) D.(﹣1,﹣2)4.如图,某超市自动扶梯的倾斜角为,扶梯长为米,则扶梯高的长为()A.米 B.米 C.米 D.米5.如图,已知DE∥BC,CD和BE相交于点O,S△DOE:S△COB=4:9,则AE:EC为()A.2:1 B.2:3 C.4:9 D.5:46.如图,一只花猫发现一只老鼠溜进了一个内部连通的鼠洞,鼠洞只有三个出口,要想同时顾及这三个出口以防老鼠出洞,这只花猫最好蹲守在()A.的三边高线的交点处B.的三角平分线的交点处C.的三边中线的交点处D.的三边中垂线线的交点处7.下列方程中,关于x的一元二次方程是()A.x2﹣x(x+3)=0 B.ax2+bx+c=0C.x2﹣2x﹣3=0 D.x2﹣2y﹣1=08.关于x的方程有实数根,则k的取值范围是()A. B.且 C. D.且9.如图,AB是半圆O的直径,且AB=4cm,动点P从点O出发,沿OA→→BO的路径以每秒1cm的速度运动一周.设运动时间为t,s=OP2,则下列图象能大致刻画s与t的关系的是()A. B.C. D.10.已知关于的一元二次方程有两个相等的实数根,则锐角等于()A. B. C. D.11.如图,在边长为1的正方形组成的网格中,△ABC的顶点都在格点上,将△ABC绕点C顺时针旋转60°,则顶点A所经过的路径长为()A.10π B.C.π D.π12.在同一坐标系中,一次函数与二次函数的图象可能是().A. B. C. D.二、填空题(每题4分,共24分)13.直线y=2被抛物线y=x2﹣3x+2截得的线段长为_____.14.双曲线y1、y2在第一象限的图象如图,,过y1上的任意一点A,作x轴的平行线交y2于B,交y轴于C,若S△AOB=1,则y2的解析式是15.如果抛物线y=(k﹣2)x2+k的开口向上,那么k的取值范围是_____.16.已知y是x的二次函数,y与x的部分对应值如下表:x...-1012...y...0343...该二次函数图象向左平移______个单位,图象经过原点.17.计算:=_____.18.如图,将沿方向平移得到,与重叠部分(即图中阴影部分)的面积是面积的,若,则平移的距离是__________.,三、解答题(共78分)19.(8分)如图,已知是等边三角形的外接圆,点在圆上,在的延长线上有一点,使,交于点.(1)求证:是的切线(2)若,求的长20.(8分)如图,某数学兴趣小组为测量一棵古树BH和教学楼CG的高,先在A处用高1.5米的测角仪测得古树顶端H的仰角为,此时教学楼顶端G恰好在视线DH上,再向前走7米到达B处,又测得教学楼顶端G的仰角为,点A、B、C三点在同一水平线上.(1)求古树BH的高;(2)求教学楼CG的高.21.(8分)如图,∠MON=60°,OF平分∠MON,点A在射线OM上,P,Q是射线ON上的两动点,点P在点Q的左侧,且PQ=OA,作线段OQ的垂直平分线,分别交OM,OF,ON于点D,B,C,连接AB,PB.(1)依题意补全图形;(2)判断线段AB,PB之间的数量关系,并证明;(3)连接AP,设,当P和Q两点都在射线ON上移动时,是否存在最小值?若存在,请直接写出的最小值;若不存在,请说明理由.22.(10分)已知,关于x的方程(m﹣1)x2+2x﹣2=0为一元二次方程,且有两个不相等的实数根,求m的取值范围.23.(10分)如图1,在平面直角坐标系xOy中,已知△ABC,∠ABC=90°,顶点A在第一象限,B,C在x轴的正半轴上(C在B的右侧),BC=2,AB=2,△ADC与△ABC关于AC所在的直线对称.(1)当OB=2时,求点D的坐标;(2)若点A和点D在同一个反比例函数的图象上,求OB的长;(3)如图2,将第(2)题中的四边形ABCD向右平移,记平移后的四边形为A1B1C1D1,过点D1的反比例函数y=(k≠0)的图象与BA的延长线交于点P.问:在平移过程中,是否存在这样的k,使得以点P,A1,D为顶点的三角形是直角三角形?若存在,请直接写出所有符合题意的k的值;若不存在,请说明理由.24.(10分)如图,已知抛物线y=﹣x2+(m﹣1)x+m的对称轴为x=,请你解答下列问题:(1)m=,抛物线与x轴的交点为.(2)x取什么值时,y的值随x的增大而减小?(3)x取什么值时,y<0?25.(12分)某水产品养殖企业为指导该企业某种产品的养殖和销售,对历年市场行情和水产品的养殖情况进行了调查.调查发现这种水产品的每千克售价(元)与销售月份(月)满足关系式+36,而其每千克成本(元)与销售月份(月)满足的函数关系如图所示:(1)试确定、的值;(2)求出这种水产品每千克的利润(元)与销售月份(月)之间的函数关系式;(3)几月份出售这种水产品每千克利润最大?最大利润是多少?26.某校九年级数学兴趣小组为了测得该校地下停车场的限高CD,在课外活动时间测得下列数据:如图,从地面E点测得地下停车场的俯角为30°,斜坡AE的长为16米,地面B点(与E点在同一个水平线)距停车场顶部C点(A、C、B在同一条直线上且与水平线垂直)2米.试求该校地下停车场的高度AC及限高CD(结果精确到0.1米,≈1.732).
参考答案一、选择题(每题4分,共48分)1、B【分析】根据面积比为相似比的平方即可求得结果.【详解】解:∵两个相似多边形的面积比为4:9,∴它们的周长比为:=.故选B.【点睛】本题主要考查图形相似的知识点,解此题的关键在于熟记两个相似多边形的面积比为其相似比的平方.2、D【分析】A.根据对称轴为时,求得顶点对应的y的值即可判断;B.根据当时,函数值小于0即可判断;C.根据抛物线与轴的交点坐标即可判断.D.根据抛物线与直线的交点情况即可判断.【详解】A.∵当时,,根据图象可知,,正确.不符合题意;B.∵当时,,根据图象可知,,正确.不符合题意;C.∵抛物线是轴对称图形,对称轴是直线,点,所以与轴的另一个交点的坐标为,根据图象可知:当时,,正确.不符合题意;D.根据图象可知:抛物线与直线有两个交点,∴关于的方程有两个不相等的实数根,本选项错误,符合题意.故选:D.【点睛】本题考查了二次函数与系数的关系、根的判别式、抛物线与x轴的交点,掌握二次函数的性质、二次函数图象与系数的关系是解题的关键.3、A【分析】根据顶点式的坐标特点直接写出顶点坐标即可解决.【详解】解:∵y=(x﹣1)2﹣2是抛物线解析式的顶点式,根据顶点式的坐标特点可知,顶点坐标为(1,﹣2).故选:A.【点睛】本题考查了顶点式,解决本题的关键是正确理解二次函数顶点式中顶点坐标的表示方法.4、A【详解】解:由题意,在Rt△ABC中,∠ABC=31°,由三角函数关系可知,
AC=AB•sinα=9sin31°(米).
故选A.【点睛】本题主要考查了三角函数关系在直角三角形中的应用.5、A【解析】试题解析:∵ED∥BC,故选A.点睛:相似三角形的性质:相似三角形的面积比等于相似比的平方.6、D【分析】根据题意知,猫应该蹲守在到三个洞口的距离相等的位置上,则此点就是三角形三边垂直平分线的交点.【详解】解:根据三角形三边垂直平分线的交点到三个顶点的距离相等,可知猫应该蹲守在△ABC三边的中垂线的交点上.
故选:D.【点睛】考查了三角形的外心的概念和性质.要熟知三角形三边垂直平分线的交点到三个顶点的距离相等.7、C【分析】一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【详解】解:A、x2﹣x(x+3)=0,化简后为﹣3x=0,不是关于x的一元二次方程,故此选项不合题意;B、ax2+bx+c=0,当a=0时,不是关于x的一元二次方程,故此选项不合题意;C、x2﹣2x﹣3=0是关于x的一元二次方程,故此选项符合题意;D、x2﹣2y﹣1=0含有2个未知数,不是关于x的一元二次方程,故此选项不合题意;故选:C.【点睛】此题主要考查了一元二次方程的定义,判断一个方程是否是一元二次方程应注意抓住5个方面:“化简后”;“一个未知数”;“未知数的最高次数是2”;“二次项的系数不等于0”;“整式方程”.8、C【分析】关于x的方程可以是一元一次方程,也可以是一元二次方程;当方程为一元一次方程时,k=1;是一元二次方程时,必须满足下列条件:(1)二次项系数不为零;(2)在有实数根下必须满足△=b2-4ac≥1.【详解】当k=1时,方程为3x-1=1,有实数根,当k≠1时,△=b2-4ac=32-4×k×(-1)=9+4k≥1,解得k≥-.综上可知,当k≥-时,方程有实数根;故选C.【点睛】本题考查了方程有实数根的含义,一元二次方程根的判别式的应用.切记不要忽略一元二次方程二次项系数不为零这一隐含条件.注意到分两种情况讨论是解题的关键.9、C【解析】在半径AO上运动时,s=OP1=t1;在弧BA上运动时,s=OP1=4;在BO上运动时,s=OP1=(4π+4-t)1,s也是t是二次函数;即可得出答案.【详解】解:利用图象可得出:当点P在半径AO上运动时,s=OP1=t1;在弧AB上运动时,s=OP1=4;在OB上运动时,s=OP1=(1π+4-t)1.结合图像可知C选项正确故选:C.【点睛】此题考查了动点问题的函数图象,能够结合图形正确得出s与时间t之间的函数关系是解决问题的关键.10、D【分析】根据一元二次方程根的判别式等于零,求出的值,进而即可得到答案.【详解】∵关于的一元二次方程有两个相等的实数根,∴∆=,解得:,∴=.故选D.【点睛】本题主要考查一元二次方程根的判别式以及特殊角三角函数,掌握一元二次方程根的判别式与根的关系,是解题的关键.11、C【详解】如图所示:在Rt△ACD中,AD=3,DC=1,根据勾股定理得:AC=,又将△ABC绕点C顺时针旋转60°,则顶点A所经过的路径长为l=.故选C.12、D【解析】试题分析:A.由直线与y轴的交点在y轴的负半轴上可知,<0,错误;B.由抛物线与y轴的交点在y轴的正半轴上可知,m>0,由直线可知,﹣m>0,错误;C.由抛物线y轴的交点在y轴的负半轴上可知,m<0,由直线可知,﹣m<0,错误;D.由抛物线y轴的交点在y轴的负半轴上可知,m<0,由直线可知,﹣m>0,正确,故选D.考点:1.二次函数的图象;2.一次函数的图象.二、填空题(每题4分,共24分)13、1【分析】求得直线与抛物线的交点坐标,从而求得截得的线段的长即可.【详解】解:令y=2得:x2﹣1x+2=2,解得:x=0或x=1,所以交点坐标为(0,2)和(1,2),所以截得的线段长为1﹣0=1,故答案为:1.【点睛】本题考查了二次函数的性质,解题的关键是求得直线与抛物线的交点,难度不大.14、y2=.【分析】根据,过y1上的任意一点A,得出△CAO的面积为2,进而得出△CBO面积为3,即可得出y2的解析式.【详解】解:∵,过y1上的任意一点A,作x轴的平行线交y2于B,交y轴于C,S△AOB=1,∴△CBO面积为3,∴xy=6,∴y2的解析式是:y2=.故答案为:y2=.15、k>2【解析】根据二次函数的性质可知,当抛物线开口向上时,二次项系数k﹣2>1.【详解】因为抛物线y=(k﹣2)x2+k的开口向上,所以k﹣2>1,即k>2,故答案为k>2.【点睛】本题考查二次函数,解题的关键是熟练运用二次函数的图象与性质,本题属于中等题型.16、2【分析】利用表格中的对称性得:抛物线与x轴另一个交点为(2,0),可得结论.【详解】解:由表格得:二次函数的对称轴是直线x==1.∵抛物线与x轴的一个交点为(-1,0),∴抛物线与x轴另一个交点为(2,0),∴该二次函数图象向左平移2个单位,图象经过原点;或该二次函数图象向右平移1个单位,图象经过原点.故填为2.【点睛】本题考查了二次函数图象与几何变换-平移,根据平移的原则:左加右减进行平移;也可以利用数形结合的思想画图解决.17、【详解】解:原式=.故答案为.18、【分析】与相交于点,因为平移,由此求出,从而求得【详解】解:由沿方向平移得到,【点睛】本题考查了平移的性质,以及相似三角形的性质.三、解答题(共78分)19、(1)证明见解析;(2)1【分析】(1)根据等边三角形的性质可得∠OAC=30°,∠BCA=10°,根据平行线的性质得到∠EAC=10°,求出∠OAE=90°,可得AE是⊙O的切线;(2)先根据等边三角形性质得AB=AC,∠BAC=∠ABC=10°,由四点共圆得∠ADF=∠ABC=10°,得△ADF是等边三角形,然后证明△BAD≌△CAF,可得的长.【详解】证明:(1)连接OA,∵⊙O是等边三角形ABC的外接圆,∴∠OAC=30°,∠BCA=10°,∵AE∥BC,∴∠EAC=∠BCA=10°,∴∠OAE=∠OAC+∠EAC=30°+10°=90°,∴AE是⊙O的切线;(2)∵△ABC是等边三角形,∴AB=AC,∠BAC=∠ABC=10°,∵A、B、C、D四点共圆,∴∠ADF=∠ABC=10°,∵AD=DF,∴△ADF是等边三角形,∴AD=AF,∠DAF=10°,∴∠BAC+∠CAD=∠DAF+∠CAD,即∠BAD=∠CAF,在△BAD和△CAF中,,∴△BAD≌△CAF,∴BD=CF=1.【点睛】本题考查了三角形的外接圆,切线的判定,全等三角形的判定和性质,等边三角形的判定和性质,四点共圆等知识点的综合运用,属于基础题,熟练掌握等边三角形的性质是关键.20、(1)8.5米;(2)米【分析】(1)利用等腰直角三角形的性质即可解决问题;(2)作HJ⊥CG于G.则△HJG是等腰直角三角形,四边形EFJH是矩形,设GJ=EF=HJ=x.构建方程即可解决问题;【详解】(1)由题意:四边形ABED是矩形,可得DE=AB=7米,AD=BE=1.5米,在Rt△DEH中,∵∠HDE=45°,∴HE=DE=7米,∴BH=EH+BE=8.5米,所以古树BH的高为8.5米;(2)作HJ⊥CG于J.易证△HJG是等腰直角三角形,四边形EFJH是矩形,∴JF=HE=7米,设HJ=x.则GJ=EF=HJ=x,在Rt△EFG中,tan60°=,即,∴,∴,∴(米);所以教学楼CG的高为米.【点睛】本题考查解直角三角形的应用-仰角俯角问题,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.21、(1)补全图形见解析;(2)AB=PB.证明见解析;(3)存在,.【分析】(1)根据题意补全图形如图1,
(2)结论:AB=PB.连接BQ,只要证明△AOB≌△PQB即可解决问题;
(3)连接BQ.只要证明△ABP∽△OBQ,即可推出,由∠AOB=30°,推出当BA⊥OM时,的值最小,最小值为,由此即可解决问题.【详解】解:(1)如图1,
(2)AB=PB.证明:如图,连接BQ.∵BC的垂直平分OQ,∴OB=BQ,∴∠BOP=∠BQP.又∵OF平分∠MON,∴∠AOB=∠BOP.∴∠AOB=∠BQP.又∵PQ=OA,∴△AOB≌△PQB,∴AB=PB.(3))∵△AOB≌△PQB,
∴∠OAB=∠BPQ,
∵∠OPB+∠BPQ=180°,
∴∠OAB+∠OPB=180°,∠AOP+∠ABP=180°,
∵∠MON=60°,
∴∠ABP=120°,
∵BA=BP,
∴∠BAP=∠BPA=30°,
∵BO=BQ,
∴∠BOQ=∠BQO=30°,
∴△ABP∽△OBQ,
∴,
∵∠AOB=30°,
∴当BA⊥OM时,的值最小,最小值为,
∴k=.【点睛】本题是三角形综合题,考查了全等三角形的判定和性质,角平分线的性质,等腰三角形的性质,直角三角形的性质,相似三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题.22、且【分析】由题意根据判别式的意义得到=22﹣4(m﹣1)×(﹣2)>0,然后解不等式即可.【详解】解:根据题意得=22﹣4(m﹣1)×(﹣2)>0且m﹣1≠0,解得且m≠1,故m的取值范围是且m≠1.【点睛】本题考查一元二次方程的定义以及一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.23、(1)点D坐标为(5,);(2)OB=2;(2)k=12.【解析】分析:(1)如图1中,作DE⊥x轴于E,解直角三角形清楚DE,CE即可解决问题;(2)设OB=a,则点A的坐标(a,2),由题意CE=1.DE=,可得D(2+a,),点A、D在同一反比例函数图象上,可得2a=(2+a),求出a的值即可;(2)分两种情形:①如图2中,当∠PA1D=90°时.②如图2中,当∠PDA1=90°时.分别构建方程解决问题即可;详解:(1)如图1中,作DE⊥x轴于E.∵∠ABC=90°,∴tan∠ACB=,∴∠ACB=60°,根据对称性可知:DC=BC=2,∠ACD=∠ACB=60°,∴∠DCE=60°,∴∠CDE=90°-60°=20°,∴CE=1,DE=,∴OE=OB+BC+CE=5,∴点D坐标为(5,).(2)设OB=a,则点A的坐标(a,2),由题意CE=1.DE=,可得D(2+a,),∵点A、D在同一反比例函数图象上,∴2a=(2+a),∴a=2,∴OB=2.(2)存在.理由如下:①如图2中,当∠PA1D=90°时.∵AD∥PA1,∴∠ADA1=180°-∠PA1D=90°,在Rt△ADA1中,∵∠DAA1=20°,AD=2,∴AA1==4,在Rt△APA1中,∵∠APA1=60°,∴PA=,∴PB=,设P(m,),则D1(m+7,),∵P、A1在同一反比例函数图象上,∴m=(m+7),解得m=2,∴P(2,),∴k=10.②如图2中,当∠PDA1=90°时.∵∠PAK=∠KDA1=90°,∠AKP=∠DKA1,∴△AKP∽△DKA1,∴.∴,∵∠AKD=∠PKA1,∴△KAD∽△KPA1,∴∠KPA1=∠KAD=20°,∠ADK=∠KA1P=20°,∴∠APD=∠ADP=20°,∴AP=AD=2,AA1=6,设P(m,4),则D1(m+9,),∵P、A1在同一反比例函数图象上,∴4m=(m+9),解得m=2,∴P(2,4),∴k=12.点睛:本题考查反比例函数综合题、相似三角形的判定和性质、锐角三角函数、解直角三角形、待定系数法等知识,解题的关键是学会用分类讨论的思想思考问题,学会了可以参数构建方程解决问题,属于中考压轴题.24、(1)2;(﹣1,1),(2,1);(2)x>;(3)x<﹣1或x>2【分析】(1)利用抛物线的对称轴方程得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 西南林业大学《材料科学与工程基础》2022-2023学年第一学期期末试卷
- 西京学院《西京青曲课堂相声》2021-2022学年第一学期期末试卷
- 职称申报诚信承诺书(个人)附件4
- 西华师范大学《篆书技法》2021-2022学年第一学期期末试卷
- 西华师范大学《现代数学概论》2022-2023学年第一学期期末试卷
- 2024年职业资格-养老护理员养老基础知识模拟考试题库试卷
- 西华师范大学《人体解剖生理学》2021-2022学年第一学期期末试卷
- 西华师范大学《地理多媒体课件制作》2023-2024学年第一学期期末试卷
- 西昌学院《项目设计实训》2022-2023学年第一学期期末试卷
- 电力专项测试题附答案
- 《旅游线路设计与开发》课程教学大纲
- 基于PLC的工业控制系统设计 -自动药片装瓶控制
- CRRT规范化治疗方案执行课件
- 工程设计变更申请表
- 清创术(debridement)精品课件
- 车间蚊虫巡检记录表
- 新员工培训-财务费用报销sangfor
- 储罐施工技术方案
- 利润分配专项审计
- 人教精通版四年级英语上册Unit 5 Lesson 27 教学设计
- 三年级上册美术课件-第7课 北京的胡同 ▏人美版(北京) (17张PPT)
评论
0/150
提交评论