版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
铜陵市重点中学2025届数学九上期末学业水平测试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.如图,AD∥BE∥CF,直线l1,l2与这三条平行线分别交于点A,B,C和点D,E,F.已知AB=1,BC=3,DE=2,则EF的长为()A.4 B..5 C.6 D.82.已知和的半径长分别是方程的两根,且,则和的位置关系为()A.相交 B.内切 C.内含 D.外切3.将6497.1亿用科学记数法表示为()A.6.4971×1012 B.64.971×1010 C.6.5×1011 D.6.4971×10114.一个袋子中装有6个黑球3个白球,这些球除颜色外,形状、大小、质地等完全相同,在看不到球的条件下,随机地从这个袋子中摸出一个球,摸到白球的概率为()A. B. C. D.5.以原点为中心,把点逆时针旋转,得点,则点坐标是()A. B. C. D.6.下列几何体的左视图为长方形的是()A. B. C. D.7.如图,边长为1的正方形ABCD绕点A逆时针旋转30°到正方形AB’C’D’,图中阴影部分的面积为().A. B. C. D.8.如图,抛物线y=ax2+bx+c(a≠0)与y轴交于点C,与x轴交于A,B两点,其中点B的坐标为B(1,0),抛物线的对称轴交x轴于点D,CE∥AB,并与抛物线的对称轴交于点E.现有下列结论:①a>0;②b>0;③1a+2b+c<0;④AD+CE=1.其中所有正确结论的序号是()A.①② B.①③ C.②③ D.②④9.如图,▱ABCD的对角线AC,BD交于点O,已知,,,则的周长为A.13 B.17 C.20 D.2610.我县为积极响应创建“省级卫生城市”的号召,为打造“绿色乐至,健康乐至”是我们每个乐至人应尽的义务.某乡镇积极开展垃圾分类有效回收,据统计2017年有效回收的垃圾约1.5万吨,截止2019年底,有效回收的垃圾约2.8万吨,设这两年该乡镇的垃圾有效回收平均增长率为x,则下列方程正确的是().A.1.5(1+2x)=2.8 B.C. D.+11.抛物线y=(x﹣2)2﹣3的顶点坐标是()A.(2,﹣3)B.(﹣2,3)C.(2,3)D.(﹣2,﹣3)12.如图,抛物线y=ax2+bx+c交x轴分别于点A(﹣3,0),B(1,0),交y轴正半轴于点D,抛物线顶点为C.下列结论①2a﹣b=0;②a+b+c=0;③当m≠﹣1时,a﹣b>am2+bm;④当△ABC是等腰直角三角形时,a=;⑤若D(0,3),则抛物线的对称轴直线x=﹣1上的动点P与B、D两点围成的△PBD周长最小值为3,其中,正确的个数为()A.2个 B.3个 C.4个 D.5个二、填空题(每题4分,共24分)13.如图,在△ABC中,DE∥BC,AE:EC=2:3,DE=4,则BC=__________.14.已知一个不透明的盒子中装有3个红球,2个白球,这些球除颜色外均相同,现从盒中任意摸出1个球,则摸到红球的概率是________
.15.如图,在△ABC中,∠ACB=90°,点D、E分别在边AC、BC上,且∠CDE=∠B,将△CDE沿DE折叠,点C恰好落在AB边上的点F处,若AC=2BC,则的值为____.16.如图,在直角坐标系中,已知点、,对连续作旋转变换,依次得到,则的直角顶点的坐标为__________.17.如图,在边长为2的菱形ABCD中,,点E、F分别在边AB、BC上.将BEF沿着直线EF翻折,点B恰好与边AD的中点G重合,则BE的长等于________.18.如图,AB是⊙O的直径,且AB=4,点C是半圆AB上一动点(不与A,B重合),CD平分∠ACB交⊙O于点D,点I是△ABC的内心,连接BD.下列结论:①点D的位置随着动点C位置的变化而变化;②ID=BD;③OI的最小值为;④ACBC=CD.其中正确的是_____________.(把你认为正确结论的序号都填上)三、解答题(共78分)19.(8分)如图,已知直线AB与轴交于点C,与双曲线交于A(3,)、B(-5,)两点.AD⊥轴于点D,BE∥轴且与轴交于点E.(1)求点B的坐标及直线AB的解析式;(2)判断四边形CBED的形状,并说明理由.20.(8分)中,∠ACB=90°,AC=BC,D是BC上一点,连接AD,将线段AD绕着点A逆时针旋转,使点D的对应点E在BC的延长线上。过点E作EF⊥AD垂足为点G,(1)求证:FE=AE;(2)填空:=__________(3)若,求的值(用含k的代数式表示).21.(8分)如图,反比例函数的图象过点A(2,3).(1)求反比例函数的解析式;(2)过A点作AC⊥x轴,垂足为C.若P是反比例函数图象上的一点,求当△PAC的面积等于6时,点P的坐标.22.(10分)如果一个直角三角形的两条直角边的长相差2cm,面积是24,那么这个三角形的两条直角边分别是多少?23.(10分)如图,两个转盘中指针落在每个数字上的机会相等,现同时转动、两个转盘,停止后,指针各指向一个数字.小聪和小明利用这两个转盘做游戏:若两数之和为负数,则小聪胜;否则,小明胜.你认为这个游戏公平吗?如果不公平,对谁更有利?请你利用树状图或列表法说明理由.24.(10分)某商店经营儿童益智玩具,已知成批购进时的单价是20元.调查发现:销售单价是30元时,月销售量是230件,而销售单价每上涨1元,月销售量就减少10件,但每件玩具售价不能高于40元.设每件玩具的销售单价上涨了x元时(x为正整数),月销售利润为y元.(1)求y与x的函数关系式并直接写出自变量x的取值范围.(2)每件玩具的售价定为多少元时,月销售利润恰为2520元?(3)每件玩具的售价定为多少元时可使月销售利润最大?最大的月利润是多少?25.(12分)如图,在正方形网格中,每个小正方形的边长均为1个单位.(1)把△ABC绕着点C逆时针旋转90°,画出旋转后对应的△A1B1C;(2)求△ABC旋转到△A1B1C时线段AC扫过的面积.26.在平面直角坐标系中,△OAB三个顶点的坐标分别为O(0,0),A(3,0),B(2,3).(1)tan∠OAB=;(2)在第一象限内画出△OA'B',使△OA'B'与△OAB关于点O位似,相似比为2:1;(3)在(2)的条件下,S△OAB:S四边形AA′B′B=.
参考答案一、选择题(每题4分,共48分)1、C【解析】解:∵AD∥BE∥CF,根据平行线分线段成比例定理可得,即,解得EF=6,故选C.2、A【解析】解答此题,先要求一元二次方程的两根,然后根据圆与圆的位置关系判断条件,确定位置关系.圆心距<两个半径和,说明两圆相交.【详解】解:解方程x2-6x+8=0得:
x1=2,x2=4,
∵O1O2=5,x2-x1=2,x2+x1=6,
∴x2-x1<O1O2<x2+x1.
∴⊙O1与⊙O2相交.
故选A.【点睛】此题综合考查一元二次方程的解法及两圆的位置关系的判断,关键解出两圆半径.3、D【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:6497.1亿=649710000000=6.4971×1.故选:D.【点睛】此题主要考查科学记数法,解题的关键是熟知科学记数法的表示方法.4、B【分析】让白球的个数除以球的总数即为摸到白球的概率.【详解】解:6个黑球3个白球一共有9个球,所以摸到白球的概率是.故选:B.【点睛】本题考查了概率,熟练掌握概率公式是解题的关键.5、B【分析】画出图形,利用图象法即可解决问题.【详解】观察图象可知B(-5,4),故选B.【点睛】本题考查坐标与图形变化-旋转,解题的关键是理解题意,灵活运用所学知识解决问题6、C【解析】分析:找到每个几何体从左边看所得到的图形即可得出结论.详解:A.球的左视图是圆;B.圆台的左视图是梯形;C.圆柱的左视图是长方形;D.圆锥的左视图是三角形.故选C.点睛:此题主要考查了简单几何体的三视图,关键是掌握每个几何体从左边看所得到的图形.7、C【分析】设B′C′与CD的交点为E,连接AE,利用“HL”证明Rt△AB′E和Rt△ADE全等,根据全等三角形对应角相等∠DAE=∠B′AE,再根据旋转角求出∠DAB′=60°,然后求出∠DAE=30°,再解直角三角形求出DE,然后根据阴影部分的面积=正方形ABCD的面积﹣四边形ADEB′的面积,列式计算即可得解.【详解】如图,设B′C′与CD的交点为E,连接AE,在Rt△AB′E和Rt△ADE中,,∴Rt△AB′E≌Rt△ADE(HL),∴∠DAE=∠B′AE,∵旋转角为30°,∴∠DAB′=60°,∴∠DAE=×60°=30°,∴DE=1×=,∴阴影部分的面积=1×1﹣2×(×1×)=1﹣.故选C.【点睛】本题考查了旋转的性质,正方形的性质,全等三角形判定与性质,解直角三角形,利用全等三角形求出∠DAE=∠B′AE,从而求出∠DAE=30°是解题的关键,也是本题的难点.8、D【分析】①根据抛物线开口方向即可判断;②根据对称轴在y轴右侧即可判断b的取值范围;③根据抛物线与x轴的交点坐标与对称轴即可判断;④根据抛物线与x轴的交点坐标及对称轴可得AD=BD,再根据CE∥AB,即可得结论.【详解】①观察图象开口向下,a<0,所以①错误;②对称轴在y轴右侧,b>0,所以②正确;③因为抛物线与x轴的一个交点B的坐标为(1,0),对称轴在y轴右侧,所以当x=2时,y>0,即1a+2b+c>0,所以>③错误;④∵抛物线y=ax2+bx+c(a≠0)与x轴交于A,B两点,∴AD=BD.∵CE∥AB,∴四边形ODEC为矩形,∴CE=OD,∴AD+CE=BD+OD=OB=1,所以④正确.综上:②④正确.故选:D.【点睛】本题考查了二次函数图象与系数的关系,解决本题的关键是综合运用二次函数图象上点的坐标特征、抛物线与x轴的交点进行计算.9、B【分析】由平行四边形的性质得出,,,即可求出的周长.【详解】四边形ABCD是平行四边形,,,,的周长.故选B.【点睛】本题主要考查了平行四边形的性质,并利用性质解题平行四边形基本性质:平行四边形两组对边分别平行;平行四边形的两组对边分别相等;平行四边形的两组对角分别相等;平行四边形的对角线互相平分.10、B【分析】根据题意可得等量关系:2017年有效回收的垃圾的量×(1+增长率)2=2019年有效回收的垃圾的量,根据等量关系列出方程即可.【详解】设这两年该乡镇的垃圾有效回收平均增长率为x,∵2017年有效回收的垃圾约1.5万吨,截止2019年底,有效回收的垃圾约2.8万吨,∴1.5(1+x)2=2.8,故选:B.【点睛】此题考查了由实际问题抽象出一元二次方程,关键是掌握平均变化率的方法,若设变化前的量为a,变化后的量为b,平均变化率为x,经过两次变化后的数量关系为a(1±x)2=b.11、A【解析】已知抛物线解析式为顶点式,可直接写出顶点坐标.【详解】:∵y=(x﹣2)2﹣3为抛物线的顶点式,根据顶点式的坐标特点可知,
∴抛物线的顶点坐标为(2,-3).
故选A..【点睛】本题考查了将解析式化为顶点式y=a(x-h)2+k,顶点坐标是(h,k),对称轴是x=h.12、D【分析】把A、B两点坐标代入抛物线的解析式并整理即可判断①②;根据抛物线的顶点和最值即可判断③;求出当△ABC是等腰直角三角形时点C的坐标,进而可求得此时a的值,于是可判断④;根据利用对称性求线段和的最小值的方法(将军饮马问题)求解即可判断⑤.【详解】解:把A(﹣3,0),B(1,0)代入y=ax2+bx+c得到,消去c得到2a﹣b=0,故①②正确;∵抛物线的对称轴是直线x=﹣1,开口向下,∴x=﹣1时,y有最大值,最大值=a﹣b+c,∵m≠﹣1,∴a﹣b+c>am2+bm+c,∴a﹣b>am2+bm,故③正确;当△ABC是等腰直角三角形时,C(﹣1,2),可设抛物线的解析式为y=a(x+1)2+2,把(1,0)代入解得a=﹣,故④正确,如图,连接AD交抛物线的对称轴于P,连接PB,则此时△BDP的周长最小,最小值=PD+PB+BD=PD+PA+BD=AD+BD,∵AD==3,BD==,∴△PBD周长最小值为3,故⑤正确.故选D.【点睛】本题考查了二次函数的图象与性质、二次函数的图象与其系数的关系、待定系数法求二次函数的解析式和求三角形周长最小值的问题,熟练掌握二次函数的图象与性质是解题的关键.二、填空题(每题4分,共24分)13、1【分析】根据DE∥BC,得到△ADE∽△ABC,得到,即可求BC的长.【详解】解:∵AE:EC=2:3,
∴AE:AC=2:5,
∵DE∥BC,
∴△ADE∽△ABC,
∴,
∵DE=4,
∴BC=1.
故答案为:1.【点睛】本题考查了相似三角形的判定和性质,熟练掌握相似三角形的判定和性质是解题的关键.14、【分析】先求出这个口袋里一共有球的个数,然后用红球的个数除以球的总个数即可.【详解】因为共有5个球,其中红球由3个,所以从中任意摸出一个球是红球的概率是,故答案为.【点睛】本题考查了概率公式,掌握概率=所求情况数与总情况数之比是解题的关键.15、【分析】由折叠的性质可知,是的中垂线,根据互余角,易证;如图(见解析),分别在中,利用他们的正切函数值即可求解.【详解】如图,设DE、CF的交点为O由折叠可知,是的中垂线,又设.【点睛】本题考查了图形折叠的性质、直角三角形中的正切函数,巧妙利用三个角的正切函数值相等是解题关键.16、【分析】根据勾股定理列式求出AB的长,再根据第四个三角形与第一个三角形的位置相同可知每三个三角形为一个循环组依次循环,然后求出一个循环组旋转前进的长度,再用2019除以3,根据商为673可知第2019个三角形的直角顶点为循环组的最后一个三角形的顶点,求出即可.【详解】解:∵点A(-3,0)、B(0,4),
∴AB==5,
由图可知,每三个三角形为一个循环组依次循环,一个循环组前进的长度为:4+5+3=12,
∵2019÷3=673,
∴△2019的直角顶点是第673个循环组的最后一个三角形的直角顶点,
∵673×12=8076,
∴△2019的直角顶点的坐标为(8076,0).故答案为(8076,0).【点睛】本题主要考查了点的坐标变化规律,仔细观察图形得到每三个三角形为一个循环组依次循环是解题的关键,也是求解的难点.图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.17、【分析】如图,作GH⊥BA交BA的延长线于H,EF交BG于O.利用勾股定理求出MG,由此即可解决问题.【详解】过点G作GM⊥AB交BA延长线于点M,则∠AMG=90°,∵G为AD的中点,∴AG=AD==1,∵四边形ABCD是菱形,∴AB//CD,∴∠MAG=∠D=60°,∴∠AGM=30°,∴AM=AG=,∴MG=,设BE=x,则AE=2-x,∵EG=BE,∴EG=x,在Rt△EGM中,EG2=EM2+MG2,∴x2=(2-x+)2+,∴x=,故答案为.【点睛】本题考查了菱形的性质、轴对称的性质等,正确添加辅助线构造直角三角形利用勾股定理进行解答是关键.18、②④【分析】①在同圆或等圆中,根据圆周角相等,则弧相等可作判断;②连接IB,根据点I是△ABC的内心,得到,可以证得,即有,可以判断②正确;③当OI最小时,经过圆心O,作,根据等腰直角三角形的性质和勾股定理,可求出,可判断③错误;④用反证法证明即可.【详解】解:平分,AB是⊙O的直径,,,是的直径,是半圆的中点,即点是定点;故①错误;如图示,连接IB,∵点I是△ABC的内心,∴又∵,∴即有∴,故②正确;如图示,当OI最小时,经过圆心O,过I点,作,交于点∵点I是△ABC的内心,经过圆心O,∴,∵∴是等腰直角三角形,又∵,∴,设,则,,∴,解之得:,即:,故③错误;假设,∵点C是半圆AB上一动点,则点C在半圆AB上对于任意位置上都满足,如图示,当经过圆心O时,,,∴与假设矛盾,故假设不成立,∴故④正确;综上所述,正确的是②④,故答案是:②④【点睛】此题考查了三角形的内心的定义和性质,等腰直角三角形的判定与性质,三角形外接圆有关的性质,角平分线的定义等知识点,熟悉相关性质是解题的关键.三、解答题(共78分)19、(1)点B的坐标是(-5,-4);直线AB的解析式为:(2)四边形CBED是菱形.理由见解析【解析】(1)根据反比例函数图象上点的坐标特征,将点A代入双曲线方程求得k值,即利用待定系数法求得双曲线方程;然后将B点代入其中,从而求得a值;设直线AB的解析式为y=mx+n,将A、B两点的坐标代入,利用待定系数法解答;(2)由点C、D的坐标、已知条件“BE∥x轴”及两点间的距离公式求得,CD=5,BE=5,且BE∥CD,从而可以证明四边形CBED是平行四边形;然后在Rt△OED中根据勾股定理求得ED=5,所以ED=CD,从而证明四边形CBED是菱形.【详解】解:(1)∵双曲线过A(3,),∴.把B(-5,)代入,得.∴点B的坐标是(-5,-4)设直线AB的解析式为,将A(3,)、B(-5,-4)代入得,,解得:.∴直线AB的解析式为:(2)四边形CBED是菱形.理由如下:点D的坐标是(3,0),点C的坐标是(-2,0).∵BE∥轴,∴点E的坐标是(0,-4).而CD=5,BE=5,且BE∥CD.∴四边形CBED是平行四边形在Rt△OED中,ED2=OE2+OD2,∴ED==5,∴ED=CD.∴□CBED是菱形20、(1)证明见解析;(2);(3).【分析】(1)由得,由∠AGH=∠ECH=90°可得∠DAC=∠BEF,由轴对称的性质得到∠DAC=∠EAC,从而可得∠BEF=∠EAC,利用三角形外角的性质得到,即可得到结论成立;(2)过点E作EM⊥BE,交BA延长线于点M,作AN⊥ME于N,先证明,得到BF=AM,再利用等腰直角三角形的性质和矩形的性质得到,DE=2CE=2AN,即可得到答案;(3)先利用相似三角形的判定证明,得到,从而得到,再证明,即可得到.【详解】(1)证明:∵,,∵垂足为点,,∵,,∵,,∵,,在和中,,,,,,∵,,,;(2)如图,过点E作EM⊥BE,交BA延长线于点M,作AN⊥ME于N,∵∠ACB=90°,AC=BC,∴∠B=45°,∵EM⊥BE,∴∠M=∠B=45°,由(1)已证:,,即,在和中,,∴,∴BF=AM,∵AN⊥ME,∠M=45°,∴是等腰直角三角形,∴AN=MN,AM=,易知四边形ACEN是矩形,∴CE=AN=MN,∵DE=2CE=2AN,∴,故答案为:;(3)∵,,,∵,由(1)知,,由(1)知,,,设,,则,,,,,,∵,,,.【点睛】本题考查了相似三角形的判定和性质,等腰直角三角形的性质,三角形的外角性质,全等三角形的判定和性质,以及等角对等边等性质,解题的关键是熟练掌握相似三角形的判定和性质进行解题,注意角度之间的相互转换.21、(1)y=;(2)(1,1),(﹣2,﹣3).【分析】(1)把点A的坐标代入反比例函数解析式,列出关于系数m的方程,通过解方程来求m的值;(2)设点P的坐标是(a,),然后根据三角形的面积公式来求点P的坐标.【详解】解:(1)设反比例函数为y=,∵反比例函数的图象过点A(2,3).则=3,解得m=1.故该反比例函数的解析式为y=;(2)设点P的坐标是(a,).∵A(2,3),∴AC=3,OC=2.∵△PAC的面积等于1,∴×AC×|a﹣2|=1,解得:|a﹣2|=4,∴a1=1,a2=﹣2,∴点P的坐标是(1,1),(﹣2,﹣3).【点睛】本题考查了反比例函数的面积问题,涉及的知识点有:待定系数法求函数解析式,坐标和图形性质,以及反比例函数的图像和性质,熟练掌握反比例函数的几何意义是解题的关键22、一条直角边的长为6cm,则另一条直角边的长为8cm.【分析】可设较短的直角边为未知数x,表示出较长的边,根据直角三角形的面积为24列出方程求正数解即可.【详解】解:设一条直角边的长为xcm,则另一条直角边的长为(x+2)cm.根据题意列方程,得.解方程,得:x1=6,x2=(不合题意,舍去).∴一条直角边的长为6cm,则另一条直角边的长为8cm.【点睛】本题考查一元二次方程的应用;用到的知识点为:直角三角形的面积等于两直角边积的一半.23、见解析【分析】首先根据题意列出表格,然后由表格即可求得所有等可能的结果与小力胜、小明胜的情况,继而求得小力胜与小明胜的概率,比较概率大小,即可知这个游戏是否公平.【详解】列表得:两个数字之和转盘A转盘B-102110132-2-3-20-1-1-2-110∵由两个转盘各转出一数字作积的所有可能情况有12种,每种情况出现的可能性相同,其中两个数字之和为非负数有7个,负数有5个,,,对小明有利,这个游戏对双方不公平..【点睛】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.24、(1)y=﹣10x2+130x+2300,0<x≤10且x为正整数;(2)每件玩具的售价定为32元时,月销售利润恰为2520元;(3)每件玩具的售价定为36元或37元时,每个月可获得最大利润,最大的月利润是2720元.【分析】(1)根据题意知一件玩具的利润为(30+x-20)元,月销售量为(230-10x),然后根据月销售利润=一件玩具的利润×月销售量即可求出函数关系式.(2)把y=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年蔬菜大棚租赁与农业信息化建设合作协议2篇
- 2024-2025学年西和县三上数学期末综合测试模拟试题含解析
- 2025年沥青路面养护车项目立项申请报告模稿
- 2025年日用陶瓷制品项目申请报告模范
- 2025年润滑油添加剂项目申请报告模范
- 高一名著读书心得800字
- 工程工作计划模板五篇
- 幼儿园中秋节演讲10篇
- 个人原因辞职报告(15篇)
- 2021初中教师教学总结汇报模板10篇
- 窗帘采购投标方案(技术方案)
- TTJSFB 002-2024 绿色融资租赁项目评价指南
- 统编版(2024新版)七年级上册历史期末复习课件
- 2024-2030年串番茄行业市场发展分析及前景趋势与投资研究报告
- 制造业数据架构设计顶层规划方案
- 新《建设工程施工合同司法解释》逐条解读
- 2024-2025学年高中英语学业水平合格性考试模拟测试卷一含解析
- 2024-2025学年广东省东莞市高三思想政治上册期末试卷及答案
- 9-XX人民医院样本外送检测管理制度(试行)
- 场地硬化合同范文
- 智力残疾送教上门教案
评论
0/150
提交评论