2025届莱芜市重点中学数学九上期末质量跟踪监视模拟试题含解析_第1页
2025届莱芜市重点中学数学九上期末质量跟踪监视模拟试题含解析_第2页
2025届莱芜市重点中学数学九上期末质量跟踪监视模拟试题含解析_第3页
2025届莱芜市重点中学数学九上期末质量跟踪监视模拟试题含解析_第4页
2025届莱芜市重点中学数学九上期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届莱芜市重点中学数学九上期末质量跟踪监视模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.某水库大坝的横断面是梯形,坝内一斜坡的坡度,则这个斜坡坡角为()A.30° B.45° C.60° D.90°2.下列事件中,属于必然事件的是()A.2020年的除夕是晴天 B.太阳从东边升起C.打开电视正在播放新闻联播 D.在一个都是白球的盒子里,摸到红球3.如图,是函数的图像上关于原点对称的任意两点,轴,轴,的面积记为,则()A. B. C. D.4.如图,半径为3的⊙O内有一点A,OA=,点P在⊙O上,当∠OPA最大时,PA的长等于()A. B. C.3 D.25.已知一个布袋里装有2个红球,3个白球和a个黄球,这些球除颜色外其余都相同.若从该布袋里任意摸出1个球,是红球的概率为,则a等于()A. B. C. D.6.如图,已知正方形ABCD的边长为2,点E、F分别为AB、BC边的中点,连接AF、DE相交于点M,则∠CDM等于A. B. C. D.7.商场举行摸奖促销活动,对于“抽到一等奖的概率为0.01”.下列说法正确的是()A.抽101次也可能没有抽到一等奖B.抽100次奖必有一次抽到一等奖C.抽一次不可能抽到一等奖D.抽了99次如果没有抽到一等奖,那么再抽一次肯定抽到一等奖8.关于x的一元二次方程x2﹣mx﹣3=0的一个解为x=﹣1,则m的值为()A.﹣2 B.2 C.5 D.﹣49.已知,则下列各式中正确的是()A. B. C. D.10.下列事件中,是随机事件的是()A.任意画两个直角三角形,这两个三角形相似 B.相似三角形的对应角相等C.⊙O的半径为5,OP=3,点P在⊙O外 D.直径所对的圆周角为直角二、填空题(每小题3分,共24分)11.中山市田心森林公园位于五桂山主峰脚下,占地3400多亩,约合2289000平方米,用科学记数法表示2289000为__________.12.如图,四边形内接于,若,_______.13.找出如下图形变化的规律,则第100个图形中黑色正方形的数量是_____.14.已知二次函数y=-x2+2x+1,若y随x增大而增大,则x的取值范围是____.15.已知二次函数y=ax2+bx+c中,自变量x与函数y的部分对应值如下表:x…-2023…y…8003…当x=-1时,y=__________.16.一件商品的原价是100元,经过两次提价后的价格为121元,设平均每次提价的百分率都是x.根据题意,可列出方程___________________.17.一学校为了绿化校园环境,向某园林公司购买了一批树苗,园林公司规定:如果购买树苗不超过60棵,每棵售价为120元;如果购买树苗超过60棵,在一定范围内,每增加1棵,所出售的这批树苗每棵售价降低0.5元,若该校最终向园林公司支付树苗款8800元,设该校共购买了棵树苗,则可列出方程__________.18.古希腊时期,人们认为最美人体的肚脐至脚底的长度与身高长度之比是(0.618,称之为黄金分割比例),著名的“断臂维纳斯”便是如此,若某位女性身高为165cm,肚脐到头顶高度为65cm,则其应穿鞋跟为_____cm的高跟鞋才能使人体近似满足黄金分割比例.(精确到1cm)三、解答题(共66分)19.(10分)在正方形ABCD中,M是BC边上一点,且点M不与B、C重合,点P在射线AM上,将线段AP绕点A顺时针旋转90°得到线段AQ,连接BP,DQ.(1)依题意补全图1;(2)①连接DP,若点P,Q,D恰好在同一条直线上,求证:DP2+DQ2=2AB2;②若点P,Q,C恰好在同一条直线上,则BP与AB的数量关系为:.20.(6分)如图,已知反比例函数的图像与一次函数的图象相交于点A(1,4)和点B(m,-2).(1)求反比例函数和一次函数的解析式;(2)求ΔAOC的面积;(3)直接写出时的x的取值范围(只写答案)21.(6分)如图,抛物线y=ax2+bx+2交x轴于点A(-1,0),B(n,0)(点A在点B的左边),交y轴于点C.(1)当n=2时求△ABC的面积.(2)若抛物线的对称轴为直线x=m,当1<n<4时,求m的取值范围.22.(8分)自贡是“盐之都,龙之乡,灯之城”,文化底蕴深厚.为弘扬乡土特色文化,某校就同学们对“自贡历史文化”的了解程度进行随机抽样调查,将调查结果绘制成如下两幅统计图:⑴本次共调查名学生,条形统计图中=;⑵若该校共有学生1200名,则该校约有名学生不了解“自贡历史文化”;⑶调查结果中,该校九年级(2)班学生中了解程度为“很了解”的同学进行测试,发现其中共有四名同学相当优秀,它们是三名男生,一名女生,现准备从这四名同学中随机抽取两人去市里参加“自贡历史文化”知识竞赛,用树状图或列表法,求恰好抽取一男生一女生的概率.23.(8分)如图,在中,,正方形的顶点分别在边、上,在边上.(1)点到的距离为_________.(2)求的长.24.(8分)开学初,某文具店销售一款书包,每个成本是50元,销售期间发现:销售单价时100元时,每天的销售量是50个,而销售单价每降低2元,每天就可多售出10个,当销售单价为多少元时,每天的销售利润达到4000元?要求销售单价不低于成本,且商家尽量让利给顾客.25.(10分)如图,AB、CD、EF是与路灯在同一直线上的三个等高的标杆,已知AB、CD在路灯光下的影长分别为BM、DN,在图中作出EF的影长.26.(10分)如图,已知⊙O的半径为5cm,弦AB的长为8cm,P是AB延长线上一点,BP=2cm,求cosP的值.

参考答案一、选择题(每小题3分,共30分)1、A【分析】根据坡度可以求得该坡角的正切值,根据正切值即可求得坡角的角度.【详解】∵坡度为,

∴,

∵,且α为锐角,

∴.

故选:A.【点睛】本题考查了坡度的定义,考查了特殊角的三角函数值,考查了三角函数值在直角三角形中的应用.2、B【分析】根据必然事件和随机事件的概念进行分析.【详解】A选项:2020年的元旦是晴天,属于随机事件,故不合题意;

B选项:太阳从东边升起,属于必然事件,故符合题意;

C选项:打开电视正在播放新闻联播,属于随机事件,故不合题意;

D选项:在一个都是白球的盒子里,摸到红球,属于不可能事件,故不合题意.故选:B.【点睛】考查了确定事件和不确定事件(随机事件),确定事件又分为必然事件和不可能事件;注:事先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,必然事件和不可能事件都是确定的.在一定条件下,可能发生也可能不发生的事件,称为随机事件.3、A【分析】根据反比例函数图象上的点A、B关于原点对称,可以写出它们的坐标,则△ABC的面积即可求得.【详解】解:设A(x₁,y₁),根据题意得B(-x₁,-y₁),BC=2x₁,AC=2y₁∵A在函数的图像上∴x₁y₁=1

故选:

A【点睛】本题考查的是反比例函数的性质.4、B【解析】如图所示:∵OA、OP是定值,∴在△OPA中,当∠OPA取最大值时,PA取最小值,∴PA⊥OA时,PA取最小值;在直角三角形OPA中,OA=3√,OP=3,∴PA=故选B.点睛:本题考查了垂径定理、圆周角定理、勾股定理的应用.解答此题的关键是找出“PA⊥OA时,∠OPA最大”这一隐含条件.当PA⊥OA时,PA取最小值,∠OPA取得最大值,然后在直角三角形OPA中利用勾股定理求PA的值即可.5、A【详解】此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.根据题意得:,解得:a=1,经检验,a=1是原分式方程的解,故本题选A.6、A【分析】根据正方形的特点可知∠CDM=∠DEA,利用勾股定理求出DE,根据余弦的定义即可求解.【详解】∵CD∥AB,∴∠CDM=∠DEA,∵E是AB中点,∴AE=AB=1∴DE=∴∠CDM=∠DEA==故选A.【点睛】此题主要考查余弦的求解,解题的关键是熟知余弦的定义.7、A【分析】根据概率是频率(多个)的波动稳定值,是对事件发生可能性大小的量的表现进行解答即可.【详解】解:根据概率的意义可得“抽到一等奖的概率为为0.01”就是说抽100次可能抽到一等奖,也可能没有抽到一等奖,抽一次也可能抽到一等奖,抽101次也可能没有抽到一等奖.故选:A.【点睛】本题考查概率的意义,概率是对事件发生可能性大小的量的表现.8、B【分析】把x=﹣1代入方程x1﹣mx﹣3=0得1+m﹣3=0,然后解关于m的方程即可.【详解】解:把x=﹣1代入方程x1﹣mx﹣3=0得1+m﹣3=0,解得m=1.故选:B.【点睛】本题主要考查对一元二次方程的解,解一元一次方程,等式的性质等知识点的理解和掌握9、A【分析】根据比例的性质,逐项分析即可.【详解】A.∵,∴,∴,正确;B.∵,∴,∴,故不正确;C.∵,∴,故不正确;D.∵,∴,∴,故不正确;故选A.【点睛】本题考查了比例的性质,熟练掌握比例的性质是解答本题的关键,如果,那么或或.10、A【分析】根据相似三角形的判定定理、相似三角形的性质定理、点与圆的位置关系、圆周角定理判断即可.【详解】解:A、任意画两个直角三角形,这两个三角形相似是随机事件,符合题意;B、相似三角形的对应角相等是必然事件,故不符合题意;C、⊙O的半径为5,OP=3,点P在⊙O外是不可能事件,故不符合题意;D、直径所对的圆周角为直角是必然事件,故不符合题意;故选:A.【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.也考查了相似三角形的判定与性质,点与圆的位置关系,圆周角定理等知识.二、填空题(每小题3分,共24分)11、【分析】科学记数法的表示形式为的形式,其中,为整数.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.当原数绝对值时,是正数;当原数的绝对值时,是负数.【详解】解:将2289000用科学记数法表示为:.故答案为:.【点睛】此题考查了科学记数法的表示方法.科学记数法的表示形式为的形式,其中,为整数,表示时关键要正确确定的值以及的值.12、【分析】根据圆内接四边形的对角互补,即可求得答案.【详解】∵四边形ABCD是⊙O的内接四边形,

∴.

故答案为:.【点睛】主要考查圆内接四边形的性质及圆周角定理.13、150个【分析】根据图形的变化寻找规律即可求解.【详解】观察图形的变化可知:当n为偶数时,第n个图形中黑色正方形的数量为(n+)个;当n为奇数时,第n个图形中黑色正方形的数量为(n+)个.所以第100个图形中黑色正方形的数量是150个.故答案为150个.【点睛】本题难度系数较大,需要根据观察得出奇偶数是不同情况,找出规律.14、x≤1【解析】试题解析:二次函数的对称轴为:随增大而增大时,的取值范围是故答案为15、3【解析】试题解析:将点代入,得解得:二次函数的解析式为:当时,故答案为:16、100(1+x)2=1.【详解】设平均每次提价的百分率为x,根据原价为100元,表示出第一次提价后的价钱为100(1+x)元,第二次提价的价钱为100(1+x)2元,根据两次提价后的价钱为1元,列出关于x的方程100(1+x)2=1.考点:一元二次方程的应用.17、【分析】根据“总售价=每棵的售价×棵数”列方程即可.【详解】解:根据题意可得:故答案为:.【点睛】此题考查的是一元二次方程的应用,掌握实际问题中的等量关系是解决此题的关键.18、1【分析】根据黄金分割的概念,列出方程直接求解即可.【详解】设她应选择高跟鞋的高度是xcm,

则≈0.618,

解得:x≈1,且符合题意.

故答案为1.【点睛】此题考查黄金分割的应用,解题关键是明确黄金分割所涉及的线段的比.三、解答题(共66分)19、(1)详见解析;(1)①详见解析;②BP=AB.【分析】(1)根据要求画出图形即可;(1)①连接BD,如图1,只要证明△ADQ≌△ABP,∠DPB=90°即可解决问题;②结论:BP=AB,如图3中,连接AC,延长CD到N,使得DN=CD,连接AN,QN.由△ADQ≌△ABP,△ANQ≌△ACP,推出DQ=PB,∠AQN=∠APC=45°,由∠AQP=45°,推出∠NQC=90°,由CD=DN,可得DQ=CD=DN=AB;【详解】(1)解:补全图形如图1:(1)①证明:连接BD,如图1,∵线段AP绕点A顺时针旋转90°得到线段AQ,∴AQ=AP,∠QAP=90°,∵四边形ABCD是正方形,∴AD=AB,∠DAB=90°,∴∠1=∠1.∴△ADQ≌△ABP,∴DQ=BP,∠Q=∠3,∵在Rt△QAP中,∠Q+∠QPA=90°,∴∠BPD=∠3+∠QPA=90°,∵在Rt△BPD中,DP1+BP1=BD1,又∵DQ=BP,BD1=1AB1,∴DP1+DQ1=1AB1.②解:结论:BP=AB.理由:如图3中,连接AC,延长CD到N,使得DN=CD,连接AN,QN.∵△ADQ≌△ABP,△ANQ≌△ACP,∴DQ=PB,∠AQN=∠APC=45°,∵∠AQP=45°,∴∠NQC=90°,∵CD=DN,∴DQ=CD=DN=AB,∴PB=AB.【点睛】本题考查正方形的性质,旋转变换、勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴20、(1),;(2)C(-3,0),S=6;(3)或【分析】(1)根据题意把A的坐标代入反比例函数的图像与一次函数,分别求出k和b,从而即可确定反比例函数和一次函数的解析式;(2)由题意先求出C的坐标,再利用三角形面积公式求出ΔAOC的面积;(3)根据函数的图象即可得出一次函数的值大于反比例函数的值的x的取值范围.【详解】解:(1)将点A(1,4)代入反比例函数的图像与一次函数,求得以及,所以反比例函数和一次函数的解析式分别为:和;(2)因为C在一次函数的图象上以及x轴上,所以求得C坐标为(-3,0),则有OC=3,ΔAOC以OC为底的高为4,所以ΔAOC的面积为:;(3)由可知一次函数的值大于反比例函数的值,把B(m,-2)代入,得出m=-2,即B(-2,-2),此时当或时,一次函数的值大于反比例函数的值.【点睛】本题考查一次函数与反比例函数的交点问题,用待定系数法求一次函数和反比例函数的解析式及利用图象比较函数值的大小,解题的关键是确定交点的坐标.21、(1)3;(2)0<m<.【分析】(1)根据n的值,得到AB的长度,然后求得点C的坐标,进而得到△ABC的面积;(2)根据题意,可以得到,然后用含m的代数式表示n,再根据n的取值范围即可得到m的取值范围.【详解】解:(1)如图,连接AC、BC,∵,令x=0,y=2,∴点C的坐标为:(0,2),∵A(-1,0),B(2,0),∴AB=3,OC=2,∴△ABC的面积是:;(2)∵抛物线y=ax2+bx+2交x轴于点A(﹣1,0),B(n,0),对称轴为直线x=m,∵1<n<4,∴,得n=2m+1,∴1<2m+1<4,解得:0<m<.【点睛】本题考查了二次函数与坐标轴的交点问题,二次函数的性质,三角形的面积公式,解题的关键是熟练掌握二次函数的性质进行解题.22、(1)60,18;⑵240;⑶.【分析】(1)根据了解很少的有24人,占40%,即可求得总人数;利用调查的总人数减去其它各项的人数即可求得m的值;(2)利用1200乘以不了解“自贡历史文化”的人所占的比例即可求解;(3)列出表格即可求出恰好抽中一男生一女生的概率.【详解】⑴.∵,故分别应填:60,18.⑵.在样本中“不了解”的占:,所以;故应填:240.⑶.列表如下(也可以选择“树状图”,注意是“不放回”)由上表可知:共有12种可能,其“一男一女”的可能性有6种.∴(一男一女)=【点睛】本题考查了条形统计图和扇形统计图的综合运用以及求随机事件的概率,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.23、(1);(2)【分析】(1)根据勾股定理即可得出BC=8,再运用等面积法,即可得出答案.(2)根据正方形的性质,即可得出,再根据相似三角形的判定可得出,进而得出,设x得出方程进行求解即可

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论