2025届广东省汕尾市海丰县数学九上期末复习检测模拟试题含解析_第1页
2025届广东省汕尾市海丰县数学九上期末复习检测模拟试题含解析_第2页
2025届广东省汕尾市海丰县数学九上期末复习检测模拟试题含解析_第3页
2025届广东省汕尾市海丰县数学九上期末复习检测模拟试题含解析_第4页
2025届广东省汕尾市海丰县数学九上期末复习检测模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届广东省汕尾市海丰县数学九上期末复习检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.下列方程式属于一元二次方程的是()A. B. C. D.2.不等式组的整数解有()A.4个 B.3个 C.2个 D.1个3.一个圆锥的侧面展开图形是半径为8cm,圆心角为120°的扇形,则此圆锥的底面半径为()A.cm B.cm C.3cm D.cm4.如果点D、E分别在△ABC中的边AB和AC上,那么不能判定DE∥BC的比例式是()A.AD:DB=AE:EC B.DE:BC=AD:ABC.BD:AB=CE:AC D.AB:AC=AD:AE5.在平面直角坐标系xOy中,以点(-3,4)为圆心,4为半径的圆()A.与x轴相交,与y轴相切 B.与x轴相离,与y轴相交C.与x轴相切,与y轴相交 D.与x轴相切,与y轴相离6.对于二次函数y=(x-1)2+2的图象,下列说法正确的是()A.开口向下B.当x=-1,时,y有最大值是2C.对称轴是x=-1D.顶点坐标是(1,2)7.下列所给图形是中心对称图形但不是轴对称图形的是()A. B. C. D.8.如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=22°,则∠BDC等于A.44° B.60° C.67° D.77°9.如图,为的直径延长到点,过点作的切线,切点为,连接,为圆上一点,则的度数为()A. B. C. D.10.矩形的长为4,宽为3,它绕矩形长所在直线旋转一周形成几何体的全面积是()A.24 B.33 C.56 D.4211.下列运算正确的是()A. B. C. D.12.将化成的形式为()A. B.C. D.二、填空题(每题4分,共24分)13.抛物线y=(x+2)2-2的顶点坐标是________.14.将抛物线向右平移2个单位长度,再向上平移1个单位长度,所得抛物线的函数表达式是_____.15.不等式>4﹣x的解集为_____.16.一个长方体木箱沿坡度坡面下滑,当木箱滑至如图位置时,AB=3m,已知木箱高BE=m,则木箱端点E距地面AC的高度EF为_____m.17.二次函数y=x2-4x+3的图象交x轴于A、B两点,交y轴于点C,则△ABC的面积为_______________________18.,两点都在二次函数的图像上,则的大小关系是____________.三、解答题(共78分)19.(8分)如图1,正方形的边在正方形的边上,连接.(1)和的数量关系是____________,和的位置关系是____________;(2)把正方形绕点旋转,如图2,(1)中的结论是否还成立?若成立,写出证明过程,若不成立,请说明理由;(3)设正方形的边长为4,正方形的边长为,正方形绕点旋转过程中,若三点共线,直接写出的长.20.(8分)如图,在平面直角坐标系xOy中,矩形OABC的顶点A在x轴的正半轴上,顶点C在y轴的正半轴上,D是BC边上的一点,OC:CD=5:3,DB=1.反比例函数y=(k≠0)在第一象限内的图象经过点D,交AB于点E,AE:BE=1:2.(1)求这个反比例函数的表达式;(2)动点P在矩形OABC内,且满足S△PAO=S四边形OABC.①若点P在这个反比例函数的图象上,求点P的坐标;②若点Q是平面内一点使得以A、B、P、Q为顶点的四边形是菱形求点Q的坐标.21.(8分)如图1.正方形的边长为,点在上,且.如图2.将线段绕点逆时针旋转,设旋转角为,并以为边作正方形,连接试问随着线段的旋转,与有怎样的数量关系?说明理由;如图3,在的条件下,若点恰好落在线段上,求点走过的路径长(保留).22.(10分)在平面直角坐标系xOy中,抛物线y=ax2+bx+c经过A(0,﹣4)和B(2,0)两点.(1)求c的值及a,b满足的关系式;(2)若抛物线在A和B两点间,从左到右上升,求a的取值范围;(3)抛物线同时经过两个不同的点M(p,m),N(﹣2﹣p,n).①若m=n,求a的值;②若m=﹣2p﹣3,n=2p+1,求a的值.23.(10分)鄂州某个体商户购进某种电子产品的进价是50元/个,根据市场调研发现售价是80元/个时,每周可卖出160个,若销售单价每个降低2元,则每周可多卖出20个.设销售价格每个降低x元(x为偶数),每周销售量为y个.(1)直接写出销售量y个与降价x元之间的函数关系式;(2)设商户每周获得的利润为W元,当销售单价定为多少元时,每周销售利润最大,最大利润是多少元?24.(10分)一个不透明的袋子中装有红、白两种颜色的小球,这些球除颜色外完全相同,其中红球1个,若从中随机摸出一个球,这个球是白球的概率为(1)求袋子中白球的个数(2)随机摸出一个球后,放回并搅匀,再随机摸出一个球,请用画树状图或列表的方法,求两次都摸到白球的概率.25.(12分)小颖和小红两位同学在学习“概率”时,做掷骰子(质地均匀的正方体)实验.他们在一次实验中共掷骰子次,试验的结果如下:朝上的点数出现的次数

①填空:此次实验中“点朝上”的频率为________;②小红说:“根据实验,出现点朝上的概率最大.”她的说法正确吗?为什么?小颖和小红在实验中如果各掷一枚骰子,那么两枚骰子朝上的点数之和为多少时的概率最大?试用列表或画树状图的方法加以说明,并求出其最大概率.26.如图,抛物线y=ax2+bx过A(4,0)B(1,3)两点,点C、B关于抛物线的对称轴对称,过点B作直线BH⊥x轴,交x轴于点H(1)求抛物线的解析式.(2)直接写出点C的坐标,并求出△ABC的面积.(3)点P是抛物线BA段上一动点,当△ABP的面积为3时,求出点P的坐标.

参考答案一、选择题(每题4分,共48分)1、D【解析】根据一元二次方程的定义逐项进行判断即可.【详解】A、是一元三次方程,故不符合题意;B、是分式方程,故不符合题意;C、是二元二次方程,故不符合题意;D、是一元二次方程,符合题意.故选:D.【点睛】本题考查一元二次方程的定义,熟练掌握定义是关键.2、B【分析】先解出不等式组的解集,然后再把所有符合条件的整数解列举出来即可.【详解】解:解得,解得,∴不等式组的解集为:,整数解有1、2、3共3个,故选:B.【点睛】本题考查了一元一次不等式组的的解法,先分别求出各不等式的解集,注意化系数为1时,如果两边同时除以一个负数,不等号的方向要改变;再求各个不等式解集的公共部分,必要时,可用数轴来求公共解集.3、A【解析】试题分析:设此圆锥的底面半径为r,根据圆锥的侧面展开图扇形的弧长等于圆锥底面周长可得:r=cm.故选A.考点:弧长的计算.4、B【解析】由AD:DB=AE:EC,DE:BC=AD:AB与BD:AB=CE:ACAB:AC=AD:AE,根据平行线分线段成比例定理,均可判定DE∥BC,然后利用排除法即可求得答案.【详解】A、∵AD:DB=AE:EC,∴DE∥BC,故本选项能判定DE∥BC;

B、由DE:BC=AD:AB,不能判定DE∥BC,故本选项不能判定DE∥BC.

C、∵BD:AB=CE:AC,∴DE∥BC,故本选项能判定DE∥BC;D、∵AB:AC=AD:AE,∴AB:AD=AC:AE,∴DE∥BC,,故本选项能判定DE∥BC.

所以选B.【点睛】此题考查了平行线分线段成比例定理.此题难度不大,解题的关键是注意准确应用平行线分线段成比例定理与数形结合思想的应用.5、C【解析】分析:首先画出图形,根据点的坐标得到圆心到X轴的距离是4,到Y轴的距离是3,根据直线与圆的位置关系即可求出答案.解答:解:圆心到X轴的距离是4,到y轴的距离是3,4=4,3<4,∴圆与x轴相切,与y轴相交,故选C.6、D【解析】根据二次函数的性质对各选项进行判断.【详解】A、由二次函数的解析式y=(x+1)2+2,可知系数>1,故函数图像开口向上.故A项错误;B、将x=﹣1代入解析式,得到y=6,故B项错误;C、由二次函数的顶点式y=(x+1)2+2可知对称轴为x=1,故C项错误;D、函数的顶点式y=(x+1)2+2可知该函数的顶点坐标是(1,2),故D项正确.故选D.【点睛】本题主要考查二次函数的图像与性质,理解二次函数的顶点式是解答此题的关键.7、D【解析】A.此图形不是中心对称图形,不是轴对称图形,故A选项错误;B.此图形是中心对称图形,也是轴对称图形,故B选项错误;C.此图形不是中心对称图形,是轴对称图形,故D选项错误.D.此图形是中心对称图形,不是轴对称图形,故C选项正确;故选D.8、C【解析】分析:△ABC中,∠ACB=90°,∠A=22°,∴∠B=90°-∠A=68°.由折叠的性质可得:∠CED=∠B=68°,∠BDC=∠EDC,∴∠ADE=∠CED﹣∠A=46°.∴.故选C.9、A【分析】连接OC,根据切线的性质和直角三角形两锐角互余求出的度数,然后根据圆周角定理即可求出的度数.【详解】连接OC∵PC为的切线∴∵故选:A.【点睛】本题主要考查切线的性质,直角三角形两锐角互余和圆周角定理,掌握切线的性质,直角三角形两锐角互余和圆周角定理是解题的关键.10、D【分析】旋转后的几何体是圆柱体,先确定出圆柱的底面半径和高,再根据圆柱的表面积公式计算即可求解.【详解】解:π×3×2×4+π×32×2=24π+18π=42π(cm2);故选:D.【点睛】本题主要考查的是点、线、面、体,根据图形确定出圆柱的底面半径和高的长是解题的关键.11、D【分析】按照有理数、乘方、幂、二次根式的运算规律进行解答即可.【详解】解:A.,故A选项错误;B.,故B选项错误;C.,故C选项错误;D.,故D选项正确;故答案为D.【点睛】本题考查了有理数、乘方、幂、二次根式的运算法则,掌握响应的运算法则是解答本题的关键.12、C【分析】本小题先将二次项的系数提出后再将括号里运用配方法配成完全平方式即可.【详解】由得:故选C【点睛】本题考查的知识点是配方法,掌握配方的方法及防止漏乘是关键.二、填空题(每题4分,共24分)13、(-2,-2)【分析】由题意直接利用顶点式的特点,即可求出抛物线的顶点坐标.【详解】解:∵y=(x+2)2-2是抛物线的顶点式,∴抛物线的顶点坐标为(-2,-2).故答案为:(-2,-2).【点睛】本题主要考查的是二次函数的性质,掌握二次函数顶点式的特征是解题的关键.14、【分析】先得出抛物线的顶点坐标为(0,0),再利用点的平移规律得到点(0,0)平移后对应的点的坐标为(2,1),然后根据顶点式写出平移后的抛物线解析式.【详解】解:抛物线的顶点坐标为(0,0),再利用点的平移规律得到点(0,0)平移后对应的点的坐标为(2,1),所以平移后的抛物线解析式为:.故答案为:.【点睛】本题考查的知识点是二次函数图象与几何变化,熟记点的平移规律是解此题的关键.15、x>1.【分析】按照去分母、去括号、移项、合并同类项、系数化为1的步骤求解即可.【详解】解:去分母得:x﹣1>8﹣2x,移项合并得:3x>12,解得:x>1,故答案为:x>1【点睛】本题考查了一元一次不等式的解法,熟练掌握解一元一次不等式的步骤是解答本题的关键.16、1【分析】连接AE,在Rt△ABE中求出AE,根据∠EAB的正切值求出∠EAB的度数,继而得到∠EAF的度数,在Rt△EAF中,解出EF即可得出答案.【详解】解:连接AE,

在Rt△ABE中,AB=1m,BE=m,则AE==2m,又∵tan∠EAB==,∴∠EAB=10°,

在Rt△AEF中,∠EAF=∠EAB+∠BAC=60°,

∴EF=AE×sin∠EAF=2×=1m,答:木箱端点E距地面AC的高度为1m.

故答案为:1.【点睛】本题考查了坡度、坡角的知识,解答本题的关键是构造直角三角形,熟练运用三角函数求线段的长度.17、3【分析】根据解析式求出A、B、C三点的坐标,即△ABC的底和高求出,然后根据公式求面积.【详解】根据题意可得:A点的坐标为(1,0),B点的坐标为(3,0),C点的坐标为(0,3),则AB=2,所以三角形的面积=2×3÷2=3.考点:二次函数与x轴、y轴的交点.18、>【分析】根据二次函数的性质,可以判断y1,y2的大小关系,本题得以解决.【详解】∵二次函数,∴当x<0时,y随x的增大而增大,∵点在二次函数的图象上,∵-1>-2,∴>,故答案为:>.【点睛】本题考查二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答.三、解答题(共78分)19、(1);(2)成立,见解析;(3)和【分析】(1)由题意通过证明,得到,再通过等量代换,得到;(2)由题意利用全等三角形的判定证明,得到,再通过等量代换进而得到;(3)根据题意分E在线段AC上以及E在线段AC的延长线上两种情况进行分类讨论.【详解】解:(1)∵四边形和四边形都是正方形,∴BC=CD,EC=CG,∴(SAS),∴;又∵;∴∴;(2)如图:成立,证明:,∴,∴,又∵,∴,即(3)①如图,E在线段AC上,∵∴OE=EC-OC==,OB==2,由勾股定理可知DG=BE=;②如图,E在线段AC的延长线上,∵∴,∴∴在中∵∴.故答案为:和.【点睛】本题考查正方形的性质以及全等三角形,熟练掌握正方形的性质以及全等三角形的判定与性质是解题的关键.20、(1)y=;(2)①(,4);②(1,3)或(3﹣2,﹣1).【分析】(1)设点B的坐标为(m,n),则点E的坐标为(m,n),点D的坐标为(m﹣1,n),利用反比例函数图像上的点的坐标特征可求出m的值,之后进一步求出n的值,然后进一步求解即可;(2)根据三角形的面积公式与矩形的面积公式结合S△PAO=S四边形OABC即可进一步求出P的纵坐标.①若点P在这个反比例函数的图象上,利用反比例函数图象上点的坐标特征可求出点P的坐标;②由点A,B的坐标及点P的总坐标可得出AP≠BP,进而可得出AB不能为对角线,设点P的坐标为(t,4),分AP=AB和BP=AB两种情况考虑:(i)当AB=AP时,利用两点间的距离公式可求出t值,进而可得出点P1的坐标,结合P1Q1的长可求出点Q1的坐标;(ii)当BP=AB时,利用两点间的距离公式可求出t值,进而可得出点P2的坐标,结合P2Q2的长可求出点Q2的坐标.【详解】(1)设点B的坐标为(m,n),则点E的坐标为(m,n),点D的坐标为(m﹣1,n).∵点D,E在反比例函数y=(k≠0)的图象上,∴k=mn=(m﹣1)n,∴m=3.∵OC:CD=5:3,∴n:(m﹣1)=5:3,∴n=5,∴k=mn=×3×5=15,∴反比例函数的表达式为y=.(2)∵S△PAO=S四边形OABC,∴OA∙yP=OA∙OC,∴yP=OC=4.当y=4时,=4,解得:x=,∴若点P在这个反比例函数的图象上,点P的坐标为(,4).②由(1)可知:点A的坐标为(3,0),点B的坐标为(3,5),∵yP=4,yA+yB=5,∴,∴AP≠BP,∴AB不能为对角线.设点P的坐标为(t,4).分AP=AB和BP=AB两种情况考虑(如图所示):(i)当AB=AP时,(3﹣t)2+(4﹣0)2=52,解得:t1=1,t2=12(舍去),∴点P1的坐标为(1,4).又∵P1Q1=AB=5,∴点Q1的坐标为(1,3);(ii)当BP=AB时,(3﹣t)2+(5﹣4)2=52,解得:t3=3﹣2,t4=3+2(舍去),∴点P2的坐标为(3﹣2,4).又∵P2Q2=AB=5,∴点Q2的坐标为(3﹣2,﹣1).综上所述:点Q的坐标为(1,3)或(3﹣2,﹣1).【点睛】本题主要考查了反比例函数的综合运用,熟练掌握相关概念是解题关键.21、(1);(2)【分析】(1)利用已知条件得出,从而可得出结论(2)连接,交于连接,可得出CG=AG,接着可证明是等边三角形.,再找出,最后利用弧长公式求解即可.【详解】解:.理由如下:由题意,可知.又,..如图,连接,交于连接.四边形是正方形,与互相垂直平分.点在线段上,垂直平分..由题意,知,.又正方形的边长为,.,即是等边三角形...则点走过的路径长就是以为圆心,长为半径,且圆心角为105°的一段弧的弧长.即所以点走过的路径长是.【点睛】本题是一道利用旋转的性质来求解的题目,考查到的知识点有全等三角形的判定及性质,等边三角形的判定,旋转的性质以及求弧长的公式.综合性较强.22、(1)c=﹣4,2a+b=2;(2)﹣1≤a<0或0<a≤1;(3)①a=;②a=1【分析】(1)直接将AB两点代入解析式可求c,以及a,b之间的关系式.

(2)根据抛物线的性质可知,当a>0时,抛物线对称轴右边的y随x增大而增大,结合抛物线对称轴x=和A、B两点位置列出不等式即可求解;(3)①根据抛物线的对称性得出,解得a=;②根据M、N的坐标,易证得两点都在直线y=-2x-3上,即M、N是直线y=-2x-3与抛物线y=ax2+(2-2a)x-4的交点,然后根据根与系数的关系得出p+(-2-p)=,解得a=1.【详解】解:(1)∵抛物线y=ax2+bx+c(a>0)经过点A(0,﹣4)和B(2,0).∴,∴c=﹣4,2a+b=2.(2)由(1)可得:y=ax2+(2﹣2a)x﹣4,对称轴为:x==,∵抛物线在A、B两点间从左到右上升,即y随x的增大而增大;①当a>0时,开口向上,对称轴在A点左侧或经过A点,即:≤0,解得:a≤1∴0<a≤1;②当a<0时,开口向下,对称轴在B点右侧或经过B点,即≥2,解得:a≥﹣1;∴﹣1≤a<0,综上,若抛物线在A和B两点间,从左到右上升,a的取值范围为﹣1≤a<0或0<a≤1;(3)①若m=n,则点M(p,m),N(﹣2﹣p,n)关于直线x=对称,∴,∴a=;②∵m=﹣2p﹣3,∴M(p,m)在直线y=﹣2x﹣3上,∵n=2p+1=﹣2(﹣2﹣p+2)+1=﹣2(﹣p﹣2)﹣3,∴N(﹣2﹣p,n)在直线y=﹣2x﹣3上,即M、N是直线y=﹣2x﹣3与抛物线y=ax2+(2﹣2a)x﹣4的交点,∴p和﹣2﹣p是方程ax2+(2﹣2a)x﹣4=﹣2x﹣3的两个根,整理得ax2+(4﹣2a)x﹣1=0,∴p+(﹣2﹣p)=,∴a=1.【点睛】本题考查了二次函数的图象和系数的关系,二函数图象上点的坐标特征,灵活利用抛物线对称轴的公式是解题的关键.23、(1);(2)当销售单价定为74元或72元时,每周销售利润最大,最大利润是5280元;【分析】(1)根据题意,由售价是80元/个时,每周可卖出160个,若销售单价每个降低2元,则每周可多卖出20个,可得销售量y个与降价x元之间的函数关系式;

(2)根据题意结合每周获得的利润W=销量×每个的利润,进而利用二次函数增减性求出答案;【详解】解:(1)依题意有:;

(2)依题意有:

W=(80-50-x)(10x+160)===-10(x-7)2+5290,

因为x为偶数,

所以当销售单价定为80-6=74元或80-8=72时,每周销售利润最大,最大利润是5280元;【点睛】此题主要考查了二次函数的应用以及一元二次方程的应用等知识,正确利用销量×每个的利润=W得出函数关系式是解题关键.24、(1)袋子中白球有2个;(2)(两次都摸到白球)【分析】(1)设袋子中白球有个,根据摸出白球的概率=白球的个数÷红、白球的总数,列出方程即可求出白球的个数;(2)根据题意,列出表格,然后根据表格和概率公式求概率即可.【详解】解:(1)设袋子中白球有个,则,解得,经检验是该方程的解,答:袋子中白球有2个.(2)列表如下:红白1白2红(红,红)(红,白1)(红,白2)白1(白1,红)(白1,白1)(白1,白2)白2(白2,红)(白2,白1)(白2,白2)由上表可知,总共有9种等可能结果,其中两次都摸到白球的有4种,所以(两次都摸到白球)【点睛】此题考查的是根据概率求白球的数量和求概率问题,掌握列表法和概率公式是解决此题的关键.25、(1)①;②说法是错误的.理由见解析;(2).【解析】(1)①让5出现的次数除以总次数即为所求的频率;②根据概率的意义,需要大量实

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论