北京市2025届九上数学期末达标检测试题含解析_第1页
北京市2025届九上数学期末达标检测试题含解析_第2页
北京市2025届九上数学期末达标检测试题含解析_第3页
北京市2025届九上数学期末达标检测试题含解析_第4页
北京市2025届九上数学期末达标检测试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

北京市2025届九上数学期末达标检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.如图,切于两点,切于点,交于.若的周长为,则的值为()A. B. C. D.2.如图,在中,若,则的长是()A. B. C. D.3.一个不透明的盒子装有个除颜色外完全相同的球,其中有4个白球.每次将球充分搅匀后,任意摸出1个球记下颜色后再放回盒子,通过如此大量重复试验,发现摸到白球的频率稳定在0.2左右,则的值约为()A.8 B.10 C.20 D.404.下列事件中,不可能事件的是()A.投掷一枚均匀的硬币10次,正面朝上的次数为5次B.任意一个五边形的外角和等于C.从装满白球的袋子里摸出红球D.大年初一会下雨5.下列关系式中,是反比例函数的是()A. B. C. D.6.如图,已知□ABCD的对角线BD=4cm,将□ABCD绕其对称中心O旋转180°,则点D所转过的路径长为()A.4πcm B.3πcm C.2πcm D.πcm7.在平面直角坐标系xOy中,已知点M,N的坐标分别为(﹣1,2),(2,1),若抛物线y=ax2﹣x+2(a≠0)与线段MN有两个不同的交点,则a的取值范围是()A.a≤﹣1或≤a< B.≤a<C.a≤或a> D.a≤﹣1或a≥8.将一元二次方程配方后所得的方程是()A. B.C. D.9.如图,▱ABCD的对角线AC,BD相交于点O,且AC=10,BD=12,CD=m,那么m的取值范围是()A.10<m<12 B.2<m<22 C.5<m<6 D.1<m<1110.在△ABC中,AD是BC边上的高,∠C=45°,sinB=,AD=1.则△ABC的面积为()A.1 B. C. D.2二、填空题(每小题3分,共24分)11.如图1,点M,N,P,Q分别在矩形ABCD的边AB,BC,CD,DA上,我们称四边形MNPQ是矩形ABCD的内接四边形.已知矩形ABCD,AB=2BC=6,若它的内接四边形MNPQ也是矩形,且相邻两边的比为3:1,则AM=_____.12.如图,是的直径,,弦,的平分线交于点,连接,则阴影部分的面积是________.(结果保留)13.如图,已知△ABC的三个顶点均在格点上,则cosA的值为_______.14.如图,点在反比例函数的图象上,过点作AB⊥轴,AC⊥轴,垂足分别为点,若,,则的值为____.15.定义:在平面直角坐标系中,我们将函数的图象绕原点逆时针旋转后得到的新曲线称为“逆旋抛物线”.(1)如图①,己知点,在函数的图象上,抛物线的顶点为,若上三点、、是、、旋转后的对应点,连结,、,则__________;(2)如图②,逆旋抛物线与直线相交于点、,则__________.16.如图,抛物线向右平移个单位得到抛物线___________.17.函数中自变量x的取值范围是________.18.如图,与正五边形ABCDE的边AB、DE分别相切于点B、D,则劣弧所对的圆心角的大小为_____度.三、解答题(共66分)19.(10分)如图,在△ABC中,sinB=,cosC=,AB=5,求△ABC的面积.20.(6分)如图,抛物线(a≠0)交x轴于A、B两点,A点坐标为(3,0),与y轴交于点C(0,4),以OC、OA为边作矩形OADC交抛物线于点G.(1)求抛物线的解析式;(2)抛物线的对称轴l在边OA(不包括O、A两点)上平行移动,分别交x轴于点E,交CD于点F,交AC于点M,交抛物线于点P,若点M的横坐标为m,请用含m的代数式表示PM的长;(3)在(2)的条件下,连结PC,则在CD上方的抛物线部分是否存在这样的点P,使得以P、C、F为顶点的三角形和△AEM相似?若存在,求出此时m的值,并直接判断△PCM的形状;若不存在,请说明理由.21.(6分)近年来某市大力发展绿色交通,构建公共、绿色交通体系,将“共享单车”陆续放置在人口流量较大的地方,琪琪同学随机调查了若干市民用“共享单车”的情况,将获得的数据分成四类,:经常使用;:偶尔使用;:了解但不使用;:不了解,并绘制了如下两个不完整的统计图.请根据以上信息,解答下列问题:(1)这次被调查的总人数是人,“:了解但不使用”的人数是人,“:不了解”所占扇形统计图的圆心角度数为.(2)某小区共有人,根据调查结果,估计使用过“共享单车”的大约有多少人?(3)目前“共享单车”有黄色、蓝色、绿色三种可选,某天小张和小李一起使用“共享单车”出行,求两人骑同一种颜色单车的概率.22.(8分)如图,在△ABC中,DE∥BC,,M为BC上一点,AM交DE于N.(1)若AE=4,求EC的长;(2)若M为BC的中点,S△ABC=36,求S△ADN的值.23.(8分)有一个直径为1m的圆形铁皮,要从中剪出一个最大的圆心角为90°的扇形ABC,如图所示.(1)求被剪掉阴影部分的面积:(2)用所留的扇形铁皮围成一个圆锥,该圆锥的底面圆的半径是多少?24.(8分)如图,Rt△ABC中,∠C=90°,E是AB边上一点,D是AC边上一点,且点D不与A、C重合,ED⊥AC.(1)当sinB=时,①求证:BE=2CD.②当△ADE绕点A旋转到如图2的位置时(45°<∠CAD<90°).BE=2CD是否成立?若成立,请给出证明;若不成立.请说明理由.(2)当sinB=时,将△ADE绕点A旋转到∠DEB=90°,若AC=10,AD=2,求线段CD的长.25.(10分)元旦期间,小黄自驾游去了离家156千米的黄石矿博园,右图是小黄离家的距离y(千米)与汽车行驶时间x(小时)之间的函数图象.(1)求小黄出发0.5小时时,离家的距离;(2)求出AB段的图象的函数解析式;(3)小黄出发1.5小时时,离目的地还有多少千米?26.(10分)已知关于x的方程x2-(2m+1)x+m(m+1)=0.(1)求证:方程总有两个不相等的实数根;(2)已知方程的一个根为x=0,求代数式(2m-1)2+(3+m)(3-m)+7m-5的值(要求先化简再求值).

参考答案一、选择题(每小题3分,共30分)1、A【分析】利用切线长定理得出,然后再根据的周长即可求出PA的长.【详解】∵切于两点,切于点,交于∴的周长为∴故选:A.【点睛】本题主要考查切线长定理,掌握切线长定理是解题的关键.2、B【分析】根据平行线分线段成比例定理,先算出,可得,根据DE的长即可求得BC的长.【详解】解:∵,∴,∵,∴,∵,∴.【点睛】本题考查了平行线分线段成比例定理,由题意求得是解题的关键.3、C【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.【详解】由题意可得,=0.2,解得,m=20,经检验m=20是所列方程的根且符合实际意义,故选:C.【点睛】本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据红球的频率得到相应的等量关系.4、C【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】解:A、投掷一枚硬币10次,有5次正面朝上是随机事件;

B、任意一个五边形的外角和是360°是确定事件;

C、从装满白球的袋子里摸出红球是不可能事件;

D、大年初一会下雨是随机事件,

故选:C.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5、B【解析】根据反比例函数、一次函数、二次函数的定义可得答案.【详解】解:y=2x-1是一次函数,故A错误;是反比例函数,故B正确;

y=x2是二次函数,故C错误;是一次函数,故D错误;

故选:B.【点睛】此题考查反比例函数、一次函数、二次函数的定义,解题关键在于理解和掌握反比例函数、一次函数、二次函数的意义.6、C【分析】点D所转过的路径长是一段弧,是一段圆心角为180°,半径为OD的弧,故根据弧长公式计算即可.【详解】解:BD=4,

∴OD=2

∴点D所转过的路径长==2π.

故选:C.【点睛】本题主要考查了弧长公式:.7、A【分析】根据二次函数的性质分两种情形讨论求解即可;【详解】∵抛物线的解析式为y=ax1-x+1.观察图象可知当a<0时,x=-1时,y≤1时,满足条件,即a+3≤1,即a≤-1;当a>0时,x=1时,y≥1,且抛物线与直线MN有交点,满足条件,∴a≥,∵直线MN的解析式为y=-x+,由,消去y得到,3ax1-1x+1=0,∵△>0,∴a<,∴≤a<满足条件,综上所述,满足条件的a的值为a≤-1或≤a<,故选A.【点睛】本题考查二次函数的应用,二次函数的图象上的点的特征等知识,解题的关键是灵活运用所学知识解决问题,学会用转化的思想思考问题,属于中考常考题型.8、B【分析】严格按照配方法的一般步骤即可得到结果.【详解】∵,∴,∴,故选B.【点睛】解答本题的关键是掌握配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.9、D【分析】先根据平行四边形的性质,可得出OD、OC的长,再根据三角形三边长关系得出m的取值范围.【详解】∵四边形ABCD是平行四边形,AC=10,BD=12∴OC=5,OD=6∴在△OCD中,OD-OC<CD<OD+OC,即1<m<11故选:D.【点睛】本题考查平行四边形的性质和三角形三边长关系,解题关键是利用平行四边形的性质,得出OC和OD的长.10、C【分析】先由三角形的高的定义得出∠ADB=∠ADC=90°,解Rt△ADB,得出AB=3,根据勾股定理求出BD=2,解Rt△ADC,得出DC=1,然后根据三角形的面积公式计算即可;【详解】在Rt△ABD中,∵sinB==,又∵AD=1,∴AB=3,∵BD2=AB2﹣AD2,∴BD.在Rt△ADC中,∵∠C=45°,∴CD=AD=1.∴BC=BD+DC=2+1,∴S△ABC=•BC•AD=×(2+1)×1=,故选:C.【点睛】本题考查了三角形的面积问题,掌握三角形的面积公式是解题的关键.二、填空题(每小题3分,共24分)11、【分析】证明△AMQ∽△DQP,△PCN∽△NBM,设MA=x,则DQ=3x,QA=3﹣3x,DP=9﹣9x,PC=9x﹣3,NB=27x﹣9,表示出NC,由BC长为3,可得方程,解方程即可得解.【详解】解:∵四边形ABCD和四边形MNPQ为矩形,∴∠D=∠A=90°,∠DQP=∠QMA,∴△AMQ∽△DQP,同理△PCM∽△NBM,设MA=x,∵PQ:QM=3:1,∴DQ=3x,QA=3﹣3x,DP=9﹣9x,PC=6﹣(9﹣9x)=9x﹣3,NB=3PC=27x﹣9,BM=6﹣x,∴NC=,∴=3,解得x=.即AM=.故答案为:.【点睛】本题考查矩形的性质,相似三角形的判定与性质,关键是熟练掌握相似三角形的判定与性质及方程的思想方法.12、【分析】连接OD,求得AB的长度,可以推知OA和OD的长度,然后由角平分线的性质求得∠AOD=90°;最后由扇形的面积公式、三角形的面积公式可以求得,阴影部分的面积=.【详解】解:连接,∵为的直径,∴,∵,∴,∴,∵平分,,∴,∴,∴,∴,∴阴影部分的面积.故答案为:.【点睛】本题综合考查了圆周角定理、含30度角的直角三角形以及扇形面积公式.13、【解析】连接BD,根据勾股定理的逆定理判断出△ABD的形状,再由锐角三角函数的定义即可得出结论.【详解】解:如图,连接BD,

∵BD2=12+12=2,AB2=12+32=10,AD2=22+22=8,2+8=10,

∴△ABD是直角三角形,且∠ADB=90°,

∴.

故答案为:.【点睛】本题主要考查了锐角三角函数和勾股定理,作出适当的辅助线构建直角三角形是解答此题的关键.14、【分析】求出点A坐标,即可求出k的值.【详解】解:根据题意,设点A的坐标为(x,y),∵,,AB⊥轴,AC⊥轴,∴点A的横坐标为:;点A的纵坐标为:;∵点A在反比例函数的图象上,∴;故答案为:.【点睛】本题考查了待定系数法求反比例函数解析式,解题的关键是熟练掌握反比例函数图象上点的坐标特征.15、3;【分析】(1)求出点A、B的坐标,再根据割补法求△ABC的面积即可得到;

(2)将旋转后的MN和抛物线旋转到之前的状态,求出直线解析式及交点坐标,利用割补法求面积即可.【详解】解:(1)在上,令x=0,解得y=2,所以C(0,2),OC=2,将,代入,解得a=3,b=2,∴,,设,的直线解析式为,则,解得,直线AB解析式为,令x=0,解得,y=4,即OD=4,∴,∴(2)如图,由旋转知,,,∴,,直线,令,得∴∴∴【点睛】此题考查了二次函数与几何问题相结合的问题,将三角形的面积转化为解题关键.16、【分析】先确定抛物线的顶点坐标为(0,2),再利用点平移的规律得到点(0,2)平移后所得对应点的坐标为(1,2),然后根据顶点式可得平移后的抛物线的解析式.【详解】解:抛物线的顶点坐标为(0,2),把点(0,2)向右平移1个单位所得对应点的坐标为(1,2),∴平移后的抛物线的解析式是:;故答案为.【点睛】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.17、x≥-1且x≠1.【分析】根据二次根式的被开方数非负和分式的分母不为0可得关于x的不等式组,解不等式组即可求得答案.【详解】解:根据题意,得,解得x≥-1且x≠1.故答案为x≥-1且x≠1.【点睛】本题考查了二次根式有意义的条件和分式有意义的条件,难度不大,属于基础题型.18、1【分析】根据正多边形内角和公式可求出、,根据切线的性质可求出、,从而可求出,然后根据圆弧长公式即可解决问题.【详解】解:五边形ABCDE是正五边形,.AB、DE与相切,,,故答案为1.【点睛】本题主要考查了切线的性质、正五边形的性质、多边形的内角和公式、熟练掌握切线的性质是解决本题的关键.三、解答题(共66分)19、【分析】过A作AD⊥BC,根据三角函数和三角形面积公式解答即可.【详解】过A作AD⊥BC.在△ABD中,∵sinB=,AB=5,∴AD=3,BD=1.在△ADC中,∵cosC=,∴∠C=15°,∴DC=AD=3,∴△ABC的面积=.【点睛】本题考查了解直角三角形,关键是根据三角函数和三角形面积公式解答.20、(1)抛物线的解析式为;(2)PM=(0<m<3);(3)存在这样的点P使△PFC与△AEM相似.此时m的值为或1,△PCM为直角三角形或等腰三角形.【解析】(1)将A(3,0),C(0,4)代入,运用待定系数法即可求出抛物线的解析式.(2)先根据A、C的坐标,用待定系数法求出直线AC的解析式,从而根据抛物线和直线AC的解析式分别表示出点P、点M的坐标,即可得到PM的长.(3)由于∠PFC和∠AEM都是直角,F和E对应,则若以P、C、F为顶点的三角形和△AEM相似时,分两种情况进行讨论:①△PFC∽△AEM,②△CFP∽△AEM;可分别用含m的代数式表示出AE、EM、CF、PF的长,根据相似三角形对应边的比相等列出比例式,求出m的值,再根据相似三角形的性质,直角三角形、等腰三角形的判定判断出△PCM的形状.【详解】解:(1)∵抛物线(a≠0)经过点A(3,0),点C(0,4),∴,解得.∴抛物线的解析式为.(2)设直线AC的解析式为y=kx+b,∵A(3,0),点C(0,4),∴,解得.∴直线AC的解析式为.∵点M的横坐标为m,点M在AC上,∴M点的坐标为(m,).∵点P的横坐标为m,点P在抛物线上,∴点P的坐标为(m,).∴PM=PE-ME=()-()=.∴PM=(0<m<3).(3)在(2)的条件下,连接PC,在CD上方的抛物线部分存在这样的点P,使得以P、C、F为顶点的三角形和△AEM相似.理由如下:由题意,可得AE=3﹣m,EM=,CF=m,PF==,若以P、C、F为顶点的三角形和△AEM相似,分两种情况:①若△PFC∽△AEM,则PF:AE=FC:EM,即():(3-m)=m:(),∵m≠0且m≠3,∴m=.∵△PFC∽△AEM,∴∠PCF=∠AME.∵∠AME=∠CMF,∴∠PCF=∠CMF.在直角△CMF中,∵∠CMF+∠MCF=90°,∴∠PCF+∠MCF=90°,即∠PCM=90°.∴△PCM为直角三角形.②若△CFP∽△AEM,则CF:AE=PF:EM,即m:(3-m)=():(),∵m≠0且m≠3,∴m=1.∵△CFP∽△AEM,∴∠CPF=∠AME.∵∠AME=∠CMF,∴∠CPF=∠CMF.∴CP=CM.∴△PCM为等腰三角形.综上所述,存在这样的点P使△PFC与△AEM相似.此时m的值为或1,△PCM为直角三角形或等腰三角形.21、(1),,;(2)4500人;(3)【分析】(1)根据条形统计图和扇形统计图的信息,即可求解;(2)由小区总人数×使用过“共享单车”的百分比,即可得到答案;(3)根据题意,列出表格,再利用概率公式,即可求解.【详解】(1)50÷25%=200(人),200×(1-30%-25%-20%)=50(人),360°×30%=108°,答:这次被调查的总人数是200人,“:了解但不使用”的人数是50人,“:不了解”所占扇形统计图的圆心角度数为108°.故答案是:,,;(2)×(25%+20%)=(人),答:估计使用过“共享单车”的大约有人;(3)列表如下:小张小李黄色蓝色绿色黄色(黄色,黄色)(黄色,蓝色)(黄色,绿色)蓝色(蓝色,黄色)(蓝色,蓝色)(蓝色,绿色)绿色(绿色,黄色)(绿色,蓝色)(绿色,绿色)由列表可知:一共有种等可能的情况,两人骑同一种颜色有三种情况:(黄色,黄色),(蓝色,蓝色),(绿色,绿色).【点睛】本题主要考查扇形统计图和条形统计图以及简单事件的概率,列出表格,得到事件的等可能的情况数,是解题的关键.22、(1)2(2)8【解析】(1)首先根据DE∥BC得到△ADE和△ABC相似,求出AC的长度,然后根据CE=AC-AE求出长度;(2)根据△ABC的面积求出△ABM的面积,然后根据相似三角形的面积比等于相似比的平方求出△ADN的面积.【详解】解:(1)∵DE∥BC∴△ADE∽△ABC∴∵AE=4∴AC=6∴EC=AC-AE=6-4=2(2)∵△ABC的面积为36,点M为BC的中点∴△ABM的面积为:36÷2=18∵△ADN和△ABM的相似比为∴∴=8考点:相似三角形的判定与性质23、(1)平方米;(2)米;【分析】(1)先根据圆周角定理可得弦BC为直径,即可得到AB=AC,根据特殊角的锐角三角函数值可求得AB的长,最后根据扇形的面积公式即可求得结果;(2)设圆锥底面圆的半径为r,而弧BC的长即为圆锥底面的周长,根据弧长公式及圆的周长公式即可求得结果.【详解】(1)∵∠BAC=90°∴弦BC为直径∴AB=AC∴AB=AC=BC·sin45°=∴S阴影=S⊙O-S扇形ABC=()2-;(2)设圆锥底面圆的半径为r,而弧BC的长即为圆锥底面的周长,由题意得2r=,解得r=答:(1)被剪掉的阴影部分的面积为;(2)该圆锥的底面圆半径是.【点睛】圆周角定理,特殊角的锐角三角函数值,扇形的面积公式,弧长公式,计算能力是初中数学学习中一个极为重要的能力,是中考的热点,在各种题型中均有出现,一般难度不大,需特别注意.24、(1)①证明见解析;②BE=2CD成立.理由见解析;(2)2或4.【分析】(1)①作EH⊥BC于点H,由sinB=可得∠B=30°,∠A=60°,根据ED⊥AC可证明四边形CDEH是矩形,根据矩形的性质可得EH=CD,根据正弦的定义即可得BE=2CD;②根据旋转的性质可得∠BAC=∠EAD,利用角的和差关系可得∠CAD=∠BAE,根据=可证明△ACD∽△ABE,及相似三角形的性质可得,进而可得BE=2CD;(2)由sinB=可得∠ABC=∠BAC=∠DAE=45°,根据ED⊥AC可得AD=DE,AC=BC,如图,分两种情况讨论,通过证明△ACD∽△ABE,求出CD的长即可.【详解】(1)①作EH⊥BC于点H,∵Rt△ABC中,∠C=90°,sinB=,∴∠B=30°,∴∠A=60°,∵ED⊥AC∴∠ADE=∠C=90°,∴四边形CDEH是矩形,即EH=CD.∴在Rt△BEH中,∠B=30°∴BE=2EH∴BE=2CD.②BE=2CD成立.理由:∵△ADE绕点A旋转到如图2的位置,∴∠BAC=∠EAD=60°,∴∠BAC+∠BAD=∠EAD+∠BAD,即∠CAD=∠BAE,∵AC:AB=1:2,AD:AE=1:2,∴,∴△ACD∽△ABE,∴,又∵Rt△ABC中,=2,∴=2,即BE=2CD.(2)∵sinB=,∴∠ABC=∠BAC=∠DAE=45°,∵ED⊥AC,∴∠AED=∠BAC=45°,∴AD=DE,AC=BC,将△ADE绕点A旋转,∠DEB=90°,分两种情况:①如图所示,过A作AF⊥BE于F,则∠F=90°,当∠DEB=90°时,∠ADE=∠DEF=90°,又∵AD=DE,∴四边形ADEF是正方形,∴AD=AF=EF=2,∵AC=10=BC,∴AB=10,∴Rt△ABF中,BF==6,∴BE=BF﹣EF=4,又∵△ABC和△ADE都是直角三角形,且∠BAC=∠EAD=45°,∴∠CAD=∠BAE,∵AC:AB=1:,AD:AE=1:,∴,∴△ACD∽△ABE,∴=,即=,∴CD=2;②如图所示,过A作AF⊥BE于F,则∠AFE=∠AFB=90°,当∠DEB=90°,∠DEB=∠

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论