版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届广州市第十中学九年级数学第一学期期末质量跟踪监视试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.已知,则()A.2 B. C.3 D.2.如图,随意向水平放置的大⊙O内部区域抛一个小球,则小球落在小⊙O内部(阴影)区域的概率为()A. B. C. D.3.已知一个几何体从三个不同方向看到的图形如图所示,则这个几何体是()A.三棱柱 B.三棱锥 C.圆柱 D.圆锥4.函数y=kx﹣k(k≠0)和y=﹣(k≠0)在同一平面直角坐标系中的图象可能是()A. B.C. D.5.反比例函数的图象如图所示,以下结论:①常数m<-1;②在每个象限内,y随x的增大而增大;③若A(-1,h),B(2,k)在图象上,则h<k;④若P(x,y)在图象上,则P′(-x,-y)也在图象上.其中正确的是A.①② B.②③ C.③④ D.①④6.将一个正方体沿正面相邻两条棱的中点连线截去一个三棱柱,得到一个如图所示的几何体,则该几何体的左视图是()A. B. C. D.7.截止到2018年底,过去五年我国农村贫困人口脱贫人数约为7000万,脱贫攻坚取得阶段性胜利,这里“7000万”用科学记数法表示为()A.7×103 B.7×108 C.7×107 D.0.7×1088.下列说法正确的是()A.打开电视机,正在播放广告是必然事件B.天气预报明天下雨的概率为%,说明明天一定会下雨C.买一张体育彩票会中奖是可能事件D.长度分别为3,5,9厘米的三条线段不能围成一个三角形是随机事件9.若反比例函数y=的图象经过点(3,1),则它的图象也一定经过的点是()A.(﹣3,1) B.(3,﹣1) C.(1,﹣3) D.(﹣1,﹣3)10.点A(1,y1)、B(3,y2)是反比例函数y=图象上的两点,则y1、y2的大小关系是()A.y1>y2 B.y1=y2 C.y1<y2 D.不能确定11.二次函数y=(x﹣4)2+2图象的顶点坐标是()A.(﹣4,2) B.(4,﹣2) C.(4,2) D.(﹣4,﹣2)12.二次函数的顶点坐标是()A. B. C. D.二、填空题(每题4分,共24分)13.已知关于的方程的一个根为-2,则方程另一个根为__________.14.如图,在Rt△ABC中,∠BAC=90°,AB=1,tanC=,以点A为圆心,AB长为半径作弧交AC于D,分别以B、D为圆心,以大于BD长为半径作弧,两弧交于点E,射线AE与BC于F,过点F作FG⊥AC于G,则FG的长为______.15.如图,点的坐标为,过点作轴的垂线交过原点与轴夹角为的直线于点,以原点为圆心,的长为半径画弧交轴正半轴于点;再过点作轴的垂线交直线于点,以原点为圆心,以的长为半径画弧交轴正半轴于点……按此做法进行下去,则点的坐标是_____.16.用配方法解方程时,原方程可变形为_________.17.计算_________.18.已知学校航模组设计制作的火箭的升空高度h(m)与飞行时间t(s)满足函数表达式,则火箭升空的最大高度是___m三、解答题(共78分)19.(8分)将正面分别写着数字1,2,3的三张卡片(注:这三张卡片的形状、大小、质地、颜色等其它方面完全相同,若背面朝上放在桌面上,这三张卡片看上去无任何差别)洗匀后,背面朝上方在桌面上,甲从中随机抽取一张卡片,记该卡片上的数字为,然后放回洗匀,背面朝上方在桌面上,再由乙从中随机抽取一张卡片,记该卡片上的数字为,组成一数对.(1)请写出.所有可能出现的结果;(2)甲、乙两人玩游戏,规则如下:按上述要求,两人各抽依次卡片,卡片上述资质和为奇数则甲赢,数字之和为偶数则乙赢,你认为这个游戏公平吗?请说明理由.20.(8分)如图,抛物线与直线交于A、B两点.点A的横坐标为-3,点B在y轴上,点P是y轴左侧抛物线上的一动点,横坐标为m,过点P作PC⊥x轴于C,交直线AB于D.(1)求抛物线的解析式;(2)当m为何值时,;(3)是否存在点P,使△PAD是直角三角形,若存在,求出点P的坐标;若不存在,说明理由.21.(8分)为促进新旧功能转换,提高经济效益,某科技公司近期研发出一种新型高科技设备,每台设备成本价为25万元,经过市场调研发现,该设备的月销售量(台)和销售单价(万元)满足如图所示的一次函数关系.(1)求月销售量与销售单价的函数关系式;(2)根据相关规定,此设备的销售单价不得高于35万元,如果该公司想获得130万元的月利润,那么该设备的销售单价应是多少万元?22.(10分)如图,在平面直角坐标系中,点A、B的坐标分别是(0,3)、(-4,0).(1)将△AOB绕点A逆时针旋转90°得到△AEF,点O、B对应点分别是E、F,请在图中面出△AEF;(2)以点O为位似中心,将三角形AEF作位似变换且缩小为原来的在网格内画出一个符合条件的23.(10分)已知抛物线y=x2﹣bx+2b(b是常数).(1)无论b取何值,该抛物线都经过定点D.请写出点D的坐标.(2)该抛物线的顶点是(m,n),当b取不同的值时,求n关于m的函数解析式.(3)若在0≤x≤4的范围内,至少存在一个x的值,使y<0,求b的取值范围.24.(10分)如图,抛物线交轴于、两点,交轴于点,点的坐标为,直线经过点、.(1)求抛物线的函数表达式;(2)点是直线上方抛物线上的一动点,求面积的最大值并求出此时点的坐标;(3)过点的直线交直线于点,连接,当直线与直线的一个夹角等于的3倍时,请直接写出点的坐标.25.(12分)有一个人患了流感,经过两轮传染后共有196个人患了流感,每轮传染中平均一个人传染了几个人?26.小淇准备利用38m长的篱笆,在屋外的空地上围成三个相连且面积相等的矩形花园.围成的花园的形状是如图所示的矩形CDEF,矩形AEHG和矩形BFHG.若整个花园ABCD(AB>BC)的面积是30m2,求HG的长.
参考答案一、选择题(每题4分,共48分)1、B【解析】直接利用相似三角形的性质求解.【详解】∵△ABC∽△A′B′C′,∴又∵AB=8,A’B’=6,∴=.故选B.【点睛】此题考查相似三角形的性质,难度不大2、B【分析】针扎到内切圆区域的概率就是内切圆的面积与外切圆面积的比.【详解】解:∵如图所示的正三角形,∴∠CAB=60°,∴∠OAB=30°,∠OBA=90°,设OB=a,则OA=2a,则小球落在小⊙O内部(阴影)区域的概率为.故选:B.【点睛】本题考查了概率问题,掌握圆的面积公式是解题的关键.3、D【分析】由主视图和左视图可得此几何体为锥体,根据俯视图是圆及圆心可判断出此几何体为圆锥.【详解】解:主视图和左视图都是三角形,此几何体为椎体,俯视图是一个圆,此几何体为圆锥.故选:D.【点睛】本题主要考查了由三视图判断几何体,由主视图和左视图可得几何体是柱体,锥体还是球体,由俯视图可确定几何体的具体形状.4、D【分析】分别根据反比例函数及一次函数图象的特点对四个选项进行逐一分析即可.【详解】解:由反比例函数y=﹣(k≠0)的图象在一、三象限可知,﹣k>0,∴k<0,∴一次函数y=kx﹣k的图象经过一、二、四象限,故A、B选项错误;由反比例函数y=﹣(k≠0)的图象在二、四象限可知,﹣k<0,∴k>0,∴一次函数y=kx﹣k的图象经过一、三、四象限,故C选项错误,D选项正确;故选:D.【点睛】此题主要考查一次函数与反比例函数图像综合,解题的关键是熟知一次函数与反比例函数系数与图像的关系.5、C【解析】分析:因为函数图象在一、三象限,故有m>0,故①错误;在每个象限内,y随x的增大而减小,故②错;对于③,将A、B坐标代入,得:h=-m,,因为m>0,所以,h<k,故③正确;函数图象关于原点对称,故④正确.因此,正确的是③④.故选C.6、B【分析】根据左视图的定义画出左视图即可得答案.【详解】从左面看,是正方形,对面中间有一条看不见的棱,用虚线表示,∴B选项符合题意,故选B.【点睛】此题主要考查了简单几何体的三视图,左视图是从左面看所得到的图形.7、C【分析】科学记数法的表示形式为的形式,其中,为整数.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.【详解】将数据7000万用科学记数法表示为.
故选:C.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为的形式,其中,为整数,表示时关键要正确确定的值以及的值.8、C【分析】根据必然事件,随机事件发生的可能性逐一判断即可.【详解】A.打开电视机,正在播放广告是随机事件,故错误;B.天气预报明天下雨的概率为%,明天也不一定会下雨,故错误;C.买一张体育彩票会中奖是可能事件,故正确;D.长度分别为3,5,9厘米的三条线段不能围成一个三角形是必然事件,故错误;故选:C.【点睛】本题主要考查随机事件和必然事件,掌握随机事件和必然事件发生的可能性是解题的关键.9、D【分析】由反比例函数y=的图象经过点(3,1),可求反比例函数解析式,把点代入解析式即可求解.【详解】∵反比例函数y=的图象经过点(3,1),∴y=,把点一一代入,发现只有(﹣1,﹣3)符合.故选D.【点睛】本题运用了待定系数法求反比例函数解析式的知识点,然后判断点是否在反比例函数的图象上.10、A【解析】∵反比例函数y=中的9>0,∴经过第一、三象限,且在每一象限内y随x的增大而减小,又∵A(1,y₁)、B(3,y₂)都位于第一象限,且1<3,∴y₁>y₂,故选A.11、C【分析】利用二次函数顶点式可直接得到抛物线的顶点坐标.【详解】解:∵y=(x﹣4)2+2,∴顶点坐标为(4,2),故答案为C.【点睛】本题考查了二次函数的顶点式,掌握顶点式各参数的含义是解答本题的关键.12、B【分析】根据抛物线的顶点式:,直接得到抛物线的顶点坐标.【详解】解:由抛物线为:,抛物线的顶点为:故选B.【点睛】本题考查的是抛物线的顶点坐标,掌握抛物线的顶点式是解题的关键.二、填空题(每题4分,共24分)13、1【分析】将方程的根-2代入原方程求出m的值,再解方程即可求解.【详解】解:把x=-2代入原方程得出,4-2m+3m=0,解得m=-4;故原方程为:,解方程得:.故答案为:1.【点睛】本题考查的知识点是解一元二次方程,根据方程的一个解求出方程中参数的值是解此题的关键.14、.【分析】过点F作FH⊥AB于点H,证四边形AGFH是正方形,设AG=x,表示出CG,再证△CFG∽△CBA,根据相似比求出x即可.【详解】如图过点F作FH⊥AB于点H,由作图知AD=AB=1,AE平分∠BAC,∴FG=FH,又∵∠BAC=∠AGF=90°,∴四边形AGFH是正方形,设AG=x,则AH=FH=GF=x,∵tan∠C=,∴AC==,则CG=-x,∵∠CGF=∠CAB=90°,∴FG∥BA,∴△CFG∽△CBA,∴,即,解得x=,∴FG=,故答案为:.【点睛】本题是对几何知识的综合考查,熟练掌握三角函数及相似知识是解决本题的关键.15、【分析】先根据一次函数方程式求出B1点的坐标,再根据B1点的坐标求出A2点的坐标,得出B2的坐标,以此类推总结规律便可求出点B2019的坐标.【详解】∵过点A1作x轴的垂线交过原点与x轴夹角为的直线l于点B1,OA1=2,∴∠B1OA1=60,∴∠OB1A1=30∴OB1=OA1=4,B1A1=∴B1(2,)∴直线y=x,以原O为圆心,OB1长为半径画弧x轴于点A2,则OA2=OB1,∵OA2=4,∴点A2的坐标为(4,0),∴B2的坐标为(4,4),即(22,22×),OA3=∴点A3的坐标为(8,0),B3(8,8),……,以此类推便可得出点A2019的坐标为(22019,0),点B2019的坐标为;故答案为:.【点睛】本题主要考查了点的坐标规律、一次函数图象上点的坐标特征、勾股定理等知识;由题意得出规律是解题的关键.16、【分析】将常数项移到方程的右边,将二次项系数化成1,再两边都加上一次项系数一半的平方配成完全平方式后即可得.【详解】∵,
方程整理得:,
配方得:,即.故答案为:.【点睛】本题主要考查了解一元二次方程-配方法,熟练掌握完全平方公式的结构特点是解本题的关键.17、【分析】先分别计算特殊角的三角函数值,负整数指数幂,再合并即可得到答案.【详解】解:故答案为:【点睛】本题考查的是特殊角三角函数的计算,负整数指数幂的运算,掌握以上知识点是解题的关键.18、1【分析】将函数解析式配方,写成顶点式,按照二次函数的性质可得答案.【详解】解:∵==,∵,∴抛物线开口向下,当x=6时,h取得最大值,火箭能达到最大高度为1m.故答案为:1.【点睛】本题考查了二次函数的应用,熟练掌握配方法及二次函数的性质,是解题的关键.三、解答题(共78分)19、(1)见解析;(2)不公平,理由见解析【解析】(1)利用枚举法解决问题即可;(2)求出数字之和为奇数的概率,数字之和为偶数的概率即可判断.【详解】(1)由题设可知,所有可能出现的结果如下:,,,,,,,,共9种;(2)两人各抽一次卡片,卡片上数字之和为奇数有4种可能,所以(甲赢);卡片上数字之和为偶数有5种可能,所以(乙赢).∵,∴乙赢的可能性大一些,故这个游戏不公平.【点睛】本题考查游戏公平性,概率等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.20、(1)y=x1+4x-1;(1)∴m=,-1,或-3时S四边形OBDC=1SS△BPD【解析】试题分析:(1)由x=0时带入y=x-1求出y的值求出B的坐标,当x=-3时,代入y=x-1求出y的值就可以求出A的坐标,由待定系数法就可以求出抛物线的解析式;(1)连结OP,由P点的横坐标为m可以表示出P、D的坐标,可以表示出S四边形OBDC和1S△BPD建立方程求出其解即可.(3)如图1,当∠APD=90°时,设出P点的坐标,就可以表示出D的坐标,由△APD∽△FCD就可与求出结论,如图3,当∠PAD=90°时,作AE⊥x轴于E,就有,可以表示出AD,再由△PAD∽△FEA由相似三角形的性质就可以求出结论.试题解析:∵y=x-1,∴x=0时,y=-1,∴B(0,-1).当x=-3时,y=-4,∴A(-3,-4).∵y=x1+bx+c与直线y=x-1交于A、B两点,∴∴∴抛物线的解析式为:y=x1+4x-1;(1)∵P点横坐标是m(m<0),∴P(m,m1+4m-1),D(m,m-1)如图1①,作BE⊥PC于E,∴BE=-m.CD=1-m,OB=1,OC=-m,CP=1-4m-m1,∴PD=1-4m-m1-1+m=-3m-m1,∴解得:m1=0(舍去),m1=-1,m3=如图1②,作BE⊥PC于E,∴BE=-m.PD=1-4m-m1+1-m=1-4m-m1,解得:m=0(舍去)或m=-3,∴m=,-1,或-3时S四边形OBDC=1S△BPD;)如图1,当∠APD=90°时,设P(a,a1+4a-1),则D(a,a-1),∴AP=m+4,CD=1-m,OC=-m,CP=1-4m-m1,∴DP=1-4m-m1-1+m=-3m-m1.在y=x-1中,当y=0时,x=1,∴(1,0),∴OF=1,∴CF=1-m.AF=4∵PC⊥x轴,∴∠PCF=90°,∴∠PCF=∠APD,∴CF∥AP,∴△APD∽△FCD,∴解得:m=1舍去或m=-1,∴P(-1,-5)如图3,当∠PAD=90°时,作AE⊥x轴于E,∴∠AEF=90°.CE=-3-m,EF=4,AF=4PD=1-m-(1-4m-m1)=3m+m1.∵PC⊥x轴,∵PC⊥x轴,∴∠DCF=90°,∴∠DCF=∠AEF,∴AE∥CD.∴AD=(-3-m)∵△PAD∽△FEA,∴∴m=-1或m=-3∴P(-1,-5)或(-3,-4)与点A重合,舍去,∴P(-1,-5).考点:二次函数综合题.21、(1)与的函数关系式为;(2)该设备的销售单价应是27万元.【分析】(1)根据图像上点坐标,代入,用待定系数法求出即可.(2)根据总利润=单个利润销售量列出方程即可.【详解】解:(1)设与的函数关系式为,依题意,得解得所以与的函数关系式为.(2)依题知.整理方程,得.解得.∵此设备的销售单价不得高于35万元,∴(舍),所以.答:该设备的销售单价应是27万元.【点睛】本题考查了一次函数以及一元二次方程的应用.22、(1)图详见解析,E(3,3),F(3,﹣1);(2)详见解析.【分析】(1)利用网格的特点和旋转的性质,画出点O,B对应点E,F,再顺次连接可得到,然后写出E、F的坐标即可;(2)先连接OE、OF,然后分别取OA、OE、OF的三等分点可得点,再顺次连接可得到.【详解】(1)利用网格的特点和旋转的性质,画出点O,B对应点E,F,再顺次连接可得到,如图即为所求,点E、F的坐标为;(2)先连接OE、OF,然后分别取OA、OE、OF的三等分点可得点,再顺次连接可得到,如图即为所求.【点睛】本题考查了图形的旋转、位似中心图形的画法,掌握理解旋转的定义和位似中心的定义是解题关键.23、(1)(2,1);(2)n=﹣m2+2m;(3)1<b<8或0<b<1【分析】(1)当x=2时,y=1,即可确定点D的坐标;(2)根据抛物线的顶点坐标即可得n关于m的函数解析式;(3)根据抛物线开口向上,对称轴方程,列出不等式组即可求解.【详解】解:(1)当x=2时,y=1﹣2b+2b=1,∴无论b取何值,该抛物线都经过定点D.点D的坐标为(2,1);(2)抛物线y=x2﹣bx+2b=(x﹣)2+2b﹣所以抛物线的顶点坐标为(,2b﹣)∴n=2b﹣=﹣m2+2m.所以n关于m的函数解析式为:n=﹣m2+2m.(3)因为抛物线开口向上,对称轴方程x=,根据题意,得2<<1或0<<2解得1<b<8或0<b<1.【点睛】本题考查二次函数的性质,关键在于牢记基础性质.24、(1);(2),点坐标为;(3)点的坐标为,【分析】(1)利用B(5,0)用待定系数法求抛物线解析式;(2)作PQ∥y轴交BC于Q,根据求解即可;(3)作∠CAN=∠NAM1=∠ACB,则∠AM1B=3∠ACB,则NAM1∽ACM1,通过相似的性质来求点M1的坐标;作AD⊥BC于D,作M1关于AD的对称点M2,则∠AM2C=3∠AC
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 科技园区门卫招聘协议
- 医药企业运营总监聘用协议
- 市场部个人培训小结
- 旅游设施建设合同样本
- 传统产业用地预审管理办法
- 移动通信公司安全管理实施办法
- 2022年大学物理学专业大学物理二期末考试试卷A卷-含答案
- 2022年大学机械专业大学物理二期末考试试卷D卷-含答案
- 互联网企业协议休假管理办法
- 2022年大学航空航天专业大学物理二月考试题D卷-含答案
- 股票分析入门整理-入眠
- 部编版(统编)小学语文三年级上册期末试卷(含答题卡)
- 山东预拌砂浆生产企业备案登记
- 小学四年级班家长会班主任PPT课件
- (完整版)初中尺规作图典型例题归纳总结
- 双师同堂课题中期报告
- 怎样提出好的改善提案5篇
- 《服装市场营销》课程标准.
- xx医院三季度药事管理委员会会议纪要
- 保护野生动物的英文宣传标语
- 茶叶审评细则 - 茶业大赛
评论
0/150
提交评论