浙江省台州市椒江区书生中学2025届九年级数学第一学期期末联考试题含解析_第1页
浙江省台州市椒江区书生中学2025届九年级数学第一学期期末联考试题含解析_第2页
浙江省台州市椒江区书生中学2025届九年级数学第一学期期末联考试题含解析_第3页
浙江省台州市椒江区书生中学2025届九年级数学第一学期期末联考试题含解析_第4页
浙江省台州市椒江区书生中学2025届九年级数学第一学期期末联考试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浙江省台州市椒江区书生中学2025届九年级数学第一学期期末联考试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.下列各式运算正确的是()A. B. C. D.2.下列图形中,既是轴对称图形,又是中心对称图形的是()A.正三角形 B.正五边形 C.正六边形 D.正七边形3.已知点A(-2,m),B(2,m),C(3,m﹣n)(n>0)在同一个函数的图象上,这个函数可能是()A.y=x B.y=﹣ C.y=x2 D.y=﹣x24.下列四个手机应用图标中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.5.我们要遵守交通规则,文明出行,做到“红灯停,绿灯行”,小刚每天从家到学校需经过三个路口,且每个路口都安装了红绿灯,每个路口红灯和绿灯亮的时间相同,那么小刚从家出发去学校,他遇到两次红灯的概率是()A. B. C. D.6.下列函数的对称轴是直线的是()A. B. C. D.7.下列图形中,成中心对称图形的是()A. B. C. D.8.如图,AB为⊙O的直径,C、D是⊙O上的两点,,弧AD=弧CD.则∠DAC等于()A. B. C. D.9.如图,点在上,,则的半径为()A.3 B.6 C. D.1210.下列说法正确的是()A.“任意画出一个等边三角形,它是轴对称图形”是随机事件B.某种彩票的中奖率为,说明每买1000张彩票,一定有一张中奖C.抛掷一枚质地均匀的硬币一次,出现正面朝上的概率为D.“概率为1的事件”是必然事件11.已知二次函数的与的部分对应值如表:下列结论:①抛物线的开口向上;②抛物线的对称轴为直线;③当时,;④抛物线与轴的两个交点间的距离是;⑤若是抛物线上两点,则;⑥.其中正确的个数是()A. B. C. D.12.用配方法解方程时,配方后所得的方程为()A. B. C. D.二、填空题(每题4分,共24分)13.如图,⊙O直径CD=20,AB是⊙O的弦,AB⊥CD,垂足为M,若OM:OC=3:5,则弦AB的长为______.14.点A(a,3)与点B(﹣4,b)关于原点对称,则a+b=_____.15.如图所示,半圆O的直径AB=4,以点B为圆心,为半径作弧,交半圆O于点C,交直径AB于点D,则图中阴影部分的面积是_____________.16.如图,在中,,,将绕顶点顺时针旋转,得到,点、分别与点、对应,边分别交边、于点、,如果点是边的中点,那么______.17.一元二次方程x2﹣x=0的根是_____.18.如图,△ODC是由△OAB绕点O顺时针旋转40°后得到的图形,若点D恰好落在AB上,且∠AOC=105°,则∠C=__.三、解答题(共78分)19.(8分)已知二次函数y=﹣x2+bx+c的图象经过点A(﹣1,0),C(0,3).(1)求二次函数的解析式;(2)在图中,画出二次函数的图象;(3)根据图象,直接写出当y≤0时,x的取值范围.20.(8分)课外活动时间,甲、乙、丙、丁4名同学相约进行羽毛球比赛.(1)如果将4名同学随机分成两组进行对打,求恰好选中甲乙两人对打的概率;(2)如果确定由丁担任裁判,用“手心、手背”的方法在另三人中竞选两人进行比赛.竞选规则是:三人同时伸出“手心”或“手背”中的一种手势,如果恰好只有两人伸出的手势相同,那么这两人上场,否则重新竞选.这三人伸出“手心”或“手背”都是随机的,求一次竞选就能确定甲、乙进行比赛的概率.21.(8分)关于x的一元二次方程(k+1)x2﹣3x﹣3k﹣2=0有一个根为﹣1,求k的值及方程的另一个根.22.(10分)如图所示,请画出这个几何体的三视图.23.(10分)已知在以点O为圆心的两个同心圆中,大圆的弦AB交小圆于点C,D(如图).(1)求证:AC=BD;(2)若大圆的半径R=10,小圆的半径r=8,且圆O到直线AB的距离为6,求AC的长.24.(10分)近年来,在总书记“既要金山银山,又要绿水青山”思想的指导下,我国持续的大面积雾霸天气得到了较大改善.为了调查学生对雾霾天气知识的了解程度,某校在学生中做了一次抽样调查,调查结果共分为四个等级:A.非常了解;B.比较了解;C.基本了解;D.不了解.根据调查统计结果,绘制了如图所示的不完整的三种统计图表.对雾霾天气了解程度的统计图对雾霾天气了解程度的统计图对雾霾天气了解程度的统计表对雾霾天气了解程度百分比A.非常了解5%B.比较了解15%C.基本了解45%D.不了解请结合统计图表,回答下列问题:(1)本次参与调查的学生共有______人,______;(2)请补全条形统计图;(3)根据调查结果,学校准备开展关于雾霾的知识竞赛,某班要从“非常了解”程度的小明和小刚中选一人参加,现设计了如下游戏来确定,具体规则是:把四个完全相同的乒乓球分别标上数字1,2,3,4,然后放到一个不透明的袋中充分摇匀,一个人先从袋中随机摸出一个球,另一人再从剩下的三个球中随机摸出一个球,若摸出的两个球上的数字和为奇数,则小明去,否则小刚去,请用画树状图或列表说明这个游戏规则是否公平.25.(12分)如图,已知抛物线经过、两点,与轴相交于点.(1)求抛物线的解析式;(2)点是对称轴上的一个动点,当的周长最小时,直接写出点的坐标和周长最小值;(3)点为抛物线上一点,若,求出此时点的坐标.26.如图,平面直角坐标中,把矩形OABC沿对角线OB所在的直线折叠,点A落在点D处,OD与BC交于点E.OA、OC的长是关于x的一元二次方程x2﹣9x+18=0的两个根(OA>OC).(1)求A、C的坐标.(2)直接写出点E的坐标,并求出过点A、E的直线函数关系式.(3)点F是x轴上一点,在坐标平面内是否存在点P,使以点O、B、P、F为顶点的四边形为菱形?若存在请直接写出P点坐标;若不存在,请说明理由.

参考答案一、选择题(每题4分,共48分)1、D【分析】逐一对选项进行分析即可.【详解】A.不是同类项,不能合并,故该选项错误;B.,故该选项错误;C.,故该选项错误;D.,故该选项正确;故选:D.【点睛】本题主要考查同底数幂的乘除法,积的乘方,掌握同底数幂的乘除法和积的乘方的运算法则是解题的关键.2、C【分析】根据轴对称图形与中心对称图形的概念求解即可.【详解】A、此图形不是中心对称图形,是轴对称图形,故此选项错误;

B、此图形不是中心对称图形,是轴对称图形,故此选项错误;

C、此图形既是中心对称图形,又是轴对称图形,故此选项正确;

D、此图形不是中心对称图形,是轴对称图形,故此选项错误.

故选:C.【点睛】本题主要考查了轴对称图形与中心对称图形,掌握好中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3、D【分析】可以采用排除法得出答案,由点A(-2,m),B(2,m)关于y轴对称,于是排除选项A、B;再根据B(2,m),C(3,m﹣n)(n>0)的特点和二次函数的性质,可知抛物线在对称轴的右侧呈下降趋势,所以抛物线的开口向下,即a<0.【详解】解:∵A(-2,m),B(2,m)关于y轴对称,且在同一个函数的图像上,

而,的图象关于原点对称,∴选项A、B错误,只能选C、D,,

∵,在同一个函数的图像上,而y=x2在y轴右侧呈上升趋势,∴选项C错误,而D选项符合题意.故选:D.【点睛】本题考查正比例函数、反比例函数、二次函数的图象和性质,熟悉各个函数的图象和性质是解题的基础,发现点的坐标关系是解题的关键.4、A【解析】A既是轴对称图形,又是中心对称图形;B是轴对称图形,不是中心对称图形;C既不是轴对称图形,也不是中心对称图形;D既不是轴对称图形,也不是中心对称图形;【详解】请在此输入详解!5、B【分析】画树状图得出所有情况数和遇到两次红灯的情况数,根据概率公式即可得答案.【详解】根据题意画树状图如下:共有8种等情况数,其中遇到两次红灯的有3种,则遇到两次红灯的概率是,故选:B.【点睛】本题考查利用列表法或树状图法求概率,用到的知识点为:概率=所求情况数与总情况数之比;根据树状图得到遇两次红灯的情况数是解题关键.6、C【分析】根据二次函数的性质分别写出各选项中抛物线的对称轴,然后利用排除法求解即可.【详解】A、对称轴为y轴,故本选项错误;B、对称轴为直线x=3,故本选项错误;C、对称轴为直线x=-3,故本选项正确;D、∵=∴对称轴为直线x=3,故本选项错误.故选:C.【点睛】本题考查了二次函数的性质,主要利用了对称轴的确定,是基础题.7、B【解析】根据中心对称图形的概念求解.【详解】A.不是中心对称图形;B.是中心对称图形;C.不是中心对称图形;D.不是中心对称图形.故答案选:B.【点睛】本题考查了中心对称图形,解题的关键是寻找对称中心,旋转180°后与原图重合.8、C【分析】利用圆周角定理得到,则,再根据圆内接四边形的对角互补得到,又根据弧AD=弧CD得到,然后根据等腰三角形的性质和三角形的内角和定理可得出的度数.【详解】∵AB为⊙O的直径∵弧AD=弧CD故选:C.【点睛】本题考查了圆周角定理、圆内接四边形的性质、等腰三角形的性质等知识点,利用圆内接四边形的性质求出的度数是解题关键.9、B【分析】连接OB、OC,如图,根据圆周角定理可得,进一步即可判断△OCB是等边三角形,进而可得答案.【详解】解:连接OB、OC,如图,则OB=OC,∵,∴,∴△OCB是等边三角形,∴OB=BC=6.故选:B.【点睛】本题考查了圆周角定理和等边三角形的判定和性质,属于基础题型,熟练掌握上述性质是解题关键.10、D【解析】试题解析:A、“任意画出一个等边三角形,它是轴对称图形”是必然事件,选项错误;B.某种彩票的中奖概率为,说明每买1000张,有可能中奖,也有可能不中奖,故B错误;C.抛掷一枚质地均匀的硬币一次,出现正面朝上的概率为.故C错误;D.“概率为1的事件”是必然事件,正确.故选D.11、B【分析】先利用待定系数法求出抛物线解析式,则可对①进行判断;求出抛物线的对称轴则可对②进行判断;利用抛物线与x轴的两个交点可对③④进行判断;根据二次函数的增减性可对⑤进行判断;根据a、b、c的具体数值可对⑥进行判断.【详解】解:由表格可知:抛物线与x轴的交点坐标为(0,0),(4,0),∴设抛物线解析式为y=ax(x﹣4),把(﹣1,5)代入得:5=a×(﹣1)×(﹣1﹣4),解得a=1,∴抛物线解析式为y=x2﹣4x,所以①正确;∵(0,0)与(4,0)关于抛物线的对称轴对称,∴抛物线的对称轴为直线x=2,所以②正确;∵抛物线的开口向上,且与x轴交于点(0,0)、(4,0),∴当0<x<4时,y<0,所以③错误;抛物线与x轴的两个交点(0,0)与(4,0)间的距离是4,所以④正确;若A(x1,2),B(x2,3)是抛物线上两点,则,所以x1与x2的大小不能确定,所以⑤错误;∵a=1,b=-4,c=0,∴,所以⑥错误.综上,正确的个数有3个,故选:B.【点睛】本题考查了二次函数的性质、待定系数法求二次函数的解析式、抛物线与x轴的交点以及二次函数与不等式等知识,属于常见题型,熟练掌握二次函数的性质是解题的关键.12、D【解析】根据配方的正确结果作出判断:.故选D.二、填空题(每题4分,共24分)13、1.【详解】解:连接OA,⊙O的直径CD=20,则⊙O的半径为10,即OA=OC=10,又∵OM:OC=3:5,∴OM=6,∵AB⊥CD,垂足为M,∴AM=BM,在Rt△AOM中,AM==8,∴AB=2AM=2×8=1,故答案为:1.14、1.【解析】试题分析:根据平面内两点关于关于原点对称的点,横坐标与纵坐标都互为相反数,则a=4,b=-3,从而得出a+b.试题解析:根据平面内两点关于关于原点对称的点,横坐标与纵坐标都互为相反数,∴a=4且b=-3,∴a+b=1.考点:关于原点对称的点的坐标.15、【解析】解:连接OC,CB,过O作OE⊥BC于E,∴BE=BC==.∵OB=AB=2,∴OE=1,∴∠B=30°,∴∠COA=60°,===.故答案为.16、【分析】设AC=3x,AB=5x,可求BC=4x,由旋转的性质可得CB1=BC=4x,A1B1=5x,∠ACB=∠A1CB1,由题意可证△CEB1∽△DEB,可得,即可表示出BD,DE,再得到A1D的长,故可求解.【详解】∵∠ACB=90°,sinB=,∴设AC=3x,AB=5x,∴BC==4x,∵将△ABC绕顶点C顺时针旋转,得到△A1B1C,∴CB1=BC=4x,A1B1=5x,∠ACB=∠A1CB1,∵点E是A1B1的中点,∴CE=A1B1=2.5x=B1E=A1E,∴BE=BC−CE=1.5x,∵∠B=∠B1,∠CEB1=∠BED∴△CEB1∽△DEB∴∴BD=,DE=1.5x,∴A1D=A1E-DE=x,则x:=故答案为:.【点睛】本题考查了旋转的性质,解直角三角形,相似三角形的判定和性质,证△CEB1∽△DEB是本题的关键.17、x1=0,x2=1【分析】方程左边分解因式后,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.【详解】方程变形得:x(x﹣1)=0,可得x=0或x﹣1=0,解得:x1=0,x2=1.故答案为x1=0,x2=1.【点睛】此题考查了解一元二次方程﹣因式分解法,熟练掌握方程的解法是解本题的关键.18、【分析】先根据∠AOC的度数和∠BOC的度数,可得∠AOB的度数,再根据△AOD中,AO=DO,可得∠A的度数,进而得出△ABO中∠B的度数,可得∠C的度数.【详解】解:∵∠AOC的度数为105°,由旋转可得∠AOD=∠BOC=40°,∴∠AOB=105°-40°=65°,∵△AOD中,AO=DO,∴∠A=(180°-40°)=70°,∴△ABO中,∠B=180°-70°-65°=45°,由旋转可得,∠C=∠B=45°,故答案为:45°.【点睛】本题考查旋转的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用旋转的性质解答.三、解答题(共78分)19、(1)y=﹣x2+2x+1;(2)该函数图象如图所示;见解析(1)x的取值范围x≤﹣1或x≥1.【分析】(1)用待定系数法将A(﹣1,0),C(0,1)坐标代入y=﹣x2+bx+c,求出b和c即可.(2)利用五点绘图法分别求出两交点,顶点,以及与y轴的交点和其关于对称轴的对称点,从而绘图即可.(1)根据A,B,C三点画出函数图像,观察函数图像即可求出x的取值范围.【详解】解:(1)∵二次函数y=﹣x2+bx+c的图象经过点A(﹣1,0),C(0,1),∴,得,即该函数的解析式为y=﹣x2+2x+1;(2)∵y=﹣x2+2x+1=﹣(x﹣1)2+4,∴该函数的顶点坐标是(1,4),开口向上,过点(﹣1,0),(1,0),(0,1),(2,1),该函数图象如右图所示;(1)由图象可得,当y≤0时,x的取值范围x≤﹣1或x≥1.【点睛】本题考查二次函数综合问题,结合待定系数法求二次函数解析式以及二次函数性质和二次函数图像的性质进行分析.20、(1);(2)【解析】分析:列举出将4名同学随机分成两组进行对打所有可能的结果,找出甲乙两人对打的情况数,根据概率公式计算即可.画树状图写出所有的情况,根据概率的求法计算概率.详解:(1)甲同学能和另一个同学对打的情况有三种:(甲、乙),(甲、丙),(甲、丁)则恰好选中甲乙两人对打的概率为:(2)树状图如下:一共有8种等可能的情况,其中能确定甲乙比赛的可能为(手心、手心、手背)、(手背、手背、手心)两种情况,因此,一次竞选就能确定甲、乙进行比赛的概率为.点睛:考查概率的计算,明确概率的意义时解题的关键,概率等于所求情况数与总情况数的比.21、k=1,x=【分析】将x=﹣1代入原方程可求出k值的值,然后根据根与系数的关系即可求出另外一根.【详解】将x=﹣1代入(k+1)x2﹣3x﹣3k﹣2=0,∴k=1,∴该方程为2x2﹣3x﹣5=0,设另外一根为x,由根与系数的关系可知:﹣x=,∴x=.【点睛】本题考查了根与系数的关系,能熟记根与系数的关系的内容是解题的关键.22、见解析.【解析】根据三视图的画法解答即可.【详解】解:如图所示:【点睛】本题考查几何体的三视图画法.主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形;注意看到的用实线表示,看不到的用虚线表示.23、(1)证明见解析;(2)8﹣.【分析】(1)过O作OE⊥AB,根据垂径定理得到AE=BE,CE=DE,从而得到AC=BD;(2)由(1)可知,OE⊥AB且OE⊥CD,连接OC,OA,再根据勾股定理求出CE及AE的长,根据AC=AE﹣CE即可得出结论.【详解】解:(1)证明:如答图,过点O作OE⊥AB于点E,∵AE=BE,CE=DE,∴BE﹣DE=AE﹣CE,即AC=BD.(2)由(1)可知,OE⊥AB且OE⊥CD,连接OC,OA,∵OA=10,OC=8,OE=6,∴.∴AC=AE﹣CE=8﹣.【点睛】本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.24、(1)400,35%;(2)条形统计图见解析;(3)不公平.【分析】(1)用A等级的人数除以它所占的百分比可得调查的总人数,然后用1减去其它等级的百分比即可求得n的值;(3)先计算出D等级的人数,然后补全条形统计图即可;(4)通过树状图可确定12种等可能的结果,再找出和为奇数的结果有8种,再确定出为奇数的概率,再确定小明去和小刚去的概率,最后比较即可解答.【详解】解:(1)由统计图可知:A等级的人数为20,所占的百分比为5%则本次参与调查的学生共有20÷5%=400人;1-5%-15%-45%=35%;(2)由统计图可知:A等级的人数所占的百分比为45%D等级的人数为400×35%=140(人)补全条形统计图如下:(3)根据题意画出树状图如下:可发现共有12种等可能的结果且和为奇数的结果有8种所以小明去的概率为:小刚去的概率为:.由>.所以这个游戏规则不公平.【点睛】本题考查了游戏的公平性,先计算每个事件的概率,然后比较概率的大小,概率相等就公平,否则就不公平,这是解答游戏公平性题目的关键.25、(1);(2),;(3),,【分析】(1)把、代入抛物线即可求出b,c即可求解;(2)根据A,B关于对称轴对称,连接BC交对称轴于P点,即为所求,再求出坐标及的周长;(3)根据△QAB的底边为4,故三角形的高为4,令=4,求出对应的x即可求解.【详解】(1)把、代入抛物线得解得∴抛物线的解析式为:;(2)如图,连接BC交对称轴于P点,即为所求,∵∴C(0,-3

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论