2025届江苏省无锡市南长实验教育集团数学九上期末统考模拟试题含解析_第1页
2025届江苏省无锡市南长实验教育集团数学九上期末统考模拟试题含解析_第2页
2025届江苏省无锡市南长实验教育集团数学九上期末统考模拟试题含解析_第3页
2025届江苏省无锡市南长实验教育集团数学九上期末统考模拟试题含解析_第4页
2025届江苏省无锡市南长实验教育集团数学九上期末统考模拟试题含解析_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届江苏省无锡市南长实验教育集团数学九上期末统考模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,保持△ABC的三个顶点的横坐标不变,纵坐标都乘﹣1,画出坐标变化后的三角形,则所得三角形与原三角形的关系是()A.关于x轴对称B.关于y轴对称C.将原图形沿x轴的负方向平移了1个单位D.将原图形沿y轴的负方向平移了1个单位2.如图,抛物线与轴交于点A(-1,0),顶点坐标(1,n)与轴的交点在(0,2),(0,3)之间(包含端点),则下列结论:①;②;③对于任意实数m,a+b≥am2+bm总成立;④关于的方程有两个不相等的实数根.其中结论正确的个数为A.1个 B.2个 C.3个 D.4个3.如图,AB是⊙O的直径,弦CD交AB于点E,且E是CD的中点,∠CDB=30°,CD=6,则阴影部分面积为()A.π B.3π C.6π D.12π4.下列调查中,最适合采用抽样调查方式的是()A.对某飞机上旅客随身携带易燃易爆危险物品情况的调查B.对我国首艘国产“002型”航母各零部件质量情况的调查C.对渝北区某中学初2019级1班数学期末成绩情况的调查D.对全国公民知晓“社会主义核心价值观”内涵情况的调查5.我们把宽与长的比等于黄金比的矩形称为黄金矩形.如图,在黄金矩形中,的平分线交边于点,于点,则下列结论错误的是()A. B. C. D.6.关于x的一元二次方程有两个不相等的实数根,则实数m的取值范围为()A. B. C. D.7.在中,,已知和,则下列关系式中正确的是()A. B. C. D.8.如图,在平面直角坐标系中,一次函数y=-4x+4的图像与x轴,y轴分别交于A,B两点,正方形ABCD的顶点C,D在第一象限,顶点D在反比例函数的图像上,若正方形ABCD向左平移n个单位后,顶点C恰好落在反比例函数的图像上,则n的值是()A.2 B.3 C.4 D.59.一个盒子装有红、黄、白球分别为2、3、5个,这些球除颜色外都相同,从袋中任抽一个球,则抽到黄球的概率是()A. B. C. D.10.二次函数中与的部分对应值如下表所示,则下列结论错误的是()-1013-1353A. B.当时,的值随值的增大而减小C.当时, D.3是方程的一个根11.如图,是由两个正方体组成的几何体,则该几何体的俯视图为()A. B. C. D.12.将抛物线向左平移2个单位后,得到的抛物线的解析式是()A. B.C. D.二、填空题(每题4分,共24分)13.如图是水平放置的水管截面示意图,已知水管的半径为50cm,水面宽AB=80cm,则水深CD约为______cm.14.如图,在△ABC中,∠BAC=90°,∠B=60°,AD⊥BC于点D,则△ABD与△ADC的面积比为________.15.方程(x﹣1)(x+2)=0的解是______.16.如图,四边形ABCD是矩形,,,以点A为圆心,AB长为半径画弧,交CD于点E,交AD的延长线于点F,则图中阴影部分的面积是________.17.如图,对称轴平行于y轴的抛物线与x轴交于(1,0),(3,0)两点,则它的对称轴为________.18.如图,是的直径,点和点是上位于直径两侧的点,连结,,,,若的半径是,,则的值是_____________.三、解答题(共78分)19.(8分)如图,一根竖直的木杆在离地面3.1处折断,木杆顶端落在地面上,且与地面成38°角,则木杆折断之前高度约为__________.(参考数据:)20.(8分)某商店代销一批季节性服装,每套代销成本40元,第一个月每套销售定价为52元时,可售出180套;应市场变化调整第一个月的销售价,预计销售定价每增加1元,销售量将减少10套.(1)若设第二个月的销售定价每套增加x元,填写下表.时间第一个月第二个月每套销售定价(元)销售量(套)(2)若商店预计要在这两个月的代销中获利4160元,则第二个月销售定价每套多少;(3)求当4≤x≤6时第二个月销售利润的最大值.21.(8分)一次函数的图像与x轴相交于点A,与y轴相交于点B,二次函数图像经过点A、B,与x轴相交于另一点C.(1)求a、b的值;(2)在直角坐标系中画出该二次函数的图像;(3)求∠ABC的度数.22.(10分)如图,在平面直角坐标系xOy中,直线和抛物线W交于A,B两点,其中点A是抛物线W的顶点.当点A在直线上运动时,抛物线W随点A作平移运动.在抛物线平移的过程中,线段AB的长度保持不变.应用上面的结论,解决下列问题:在平面直角坐标系xOy中,已知直线.点A是直线上的一个动点,且点A的横坐标为.以A为顶点的抛物线与直线的另一个交点为点B.(1)当时,求抛物线的解析式和AB的长;(2)当点B到直线OA的距离达到最大时,直接写出此时点A的坐标;(3)过点A作垂直于轴的直线交直线于点C.以C为顶点的抛物线与直线的另一个交点为点D.①当AC⊥BD时,求的值;②若以A,B,C,D为顶点构成的图形是凸四边形(各个内角度数都小于180°)时,直接写出满足条件的的取值范围.23.(10分)综合与探究如图,在平面直角坐标系中,点的坐标分别为,点在轴上,其坐标为,抛物线经过点为第三象限内抛物线上一动点.求该抛物线的解析式.连接,过点作轴交于点,当的周长最大时,求点的坐标和周长的最大值.若点为轴上一动点,点为平面直角坐标系内一点.当点构成菱形时,请直接写出点的坐标.24.(10分)如图,一位测量人员,要测量池塘的宽度的长,他过A、B两点画两条相交于点的射线,在射线上取两点D、E,使,若测得DE=37.2米,他能求出A、B之间的距离吗?若能,请你帮他算出来;若不能,请你帮他设计一个可行方案.25.(12分)某服装店老板到厂家选购、两种品牌的羽绒服,品牌羽绒服每件进价比品牌羽绒服每件进价多元,若用元购进种羽绒服的数量是用元购进种羽绒服数量的倍.(1)求、两种品牌羽绒服每件进价分别为多少元?(2)若品牌羽绒服每件售价为元,品牌羽绒服每件售价为元,服装店老板决定一次性购进、两种品牌羽绒服共件,在这批羽绒服全部出售后所获利润不低于元,则最少购进品牌羽绒服多少件?26.已知抛物线y=﹣x2+mx+m﹣2的顶点为A,且经过点(3,﹣3).(1)求抛物线的解析式及顶点A的坐标;(2)将原抛物线沿射线OA方向进行平移得到新的抛物线,新抛物线与射线OA交于C,D两点,如图,请问:在抛物线平移的过程中,线段CD的长度是否为定值?若是,请求出这个定值;若不是,请说明理由.

参考答案一、选择题(每题4分,共48分)1、A【分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”,可知所得的三角形与原三角形关于x轴对称.【详解】解:∵纵坐标乘以﹣1,∴变化前后纵坐标互为相反数,又∵横坐标不变,∴所得三角形与原三角形关于x轴对称.故选:A.【点睛】本题考查平面直角坐标系中对称点的规律.解题关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.2、D【解析】利用抛物线开口方向得到a<0,再由抛物线的对称轴方程得到b=-2a,则3a+b=a,于是可对①进行判断;利用2≤c≤3和c=-3a可对②进行判断;利用二次函数的性质可对③进行判断;根据抛物线y=ax2+bx+c与直线y=n-1有两个交点可对④进行判断.【详解】∵抛物线开口向下,∴a<0,而抛物线的对称轴为直线x=-=1,即b=-2a,∴3a+b=3a-2a=a<0,所以①正确;∵2≤c≤3,而c=-3a,∴2≤-3a≤3,∴-1≤a≤-,所以②正确;∵抛物线的顶点坐标(1,n),∴x=1时,二次函数值有最大值n,∴a+b+c≥am2+bm+c,即a+b≥am2+bm,所以③正确;∵抛物线的顶点坐标(1,n),∴抛物线y=ax2+bx+c与直线y=n-1有两个交点,∴关于x的方程ax2+bx+c=n-1有两个不相等的实数根,所以④正确.故选D.【点睛】本题考查了二次函数图象与系数的关系:二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时,对称轴在y轴左;当a与b异号时,对称轴在y轴右.常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c).抛物线与x轴交点个数由判别式确定:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.3、D【解析】根据题意得出△COB是等边三角形,进而得出CD⊥AB,再利用垂径定理以及锐角三角函数关系得出CO的长,进而结合扇形面积求出答案.【详解】解:连接BC,∵∠CDB=30°,∴∠COB=60°,∴∠AOC=120°,又∵CO=BO,∴△COB是等边三角形,∵E为OB的中点,∴CD⊥AB,∵CD=6,∴EC=3,∴sin60°×CO=3,解得:CO=6,故阴影部分的面积为:=12π.故选:D.【点睛】此题主要考查了垂径定理以及锐角三角函数和扇形面积求法等知识,正确得出CO的长是解题关键.4、D【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似,进行判断.【详解】A、对某飞机上旅客随身携带易燃易爆危险物品情况的调查适合采用全面调查方式;B、对我国首艘国产“002型”航母各零部件质量情况的调查适合采用全面调查方式;C、对渝北区某中学初2019级1班数学期末成绩情况的调查适合采用全面调查方式;D、对全国公民知晓“社会主义核心价值观”内涵情况的调查适合采用抽样调查方式;故选:D.【点睛】本题主要考查抽样调查的意义和特点,理解抽样调查的意义是解题的关键.5、C【分析】设,则,根据黄金矩形的概念结合图形计算,据此判断即可.【详解】因为矩形宽与长的比等于黄金比,因此,设,则,则选项A.,B.,D.正确,C.选项中等式,,∴;故选:C.【点睛】本题考查的是黄金分割、矩形的性质,掌握黄金比值为是解题的关键.6、B【分析】根据方程有两个不等的实数根,故△>0,得不等式解答即可.【详解】试题分析:由已知得△>0,即(﹣3)2﹣4m>0,解得m<.故选B.【点睛】此题考查了一元二次方程根的判别式.7、B【分析】根据三角函数的定义即可作出判断.【详解】∵在Rt△ABC中,∠C=90°,∠C的对边为c,∠A的对边为a,∴sinA=,∴a=c•sinA,.故选:B.【点睛】考查了锐角三角函数的定义,正确理解直角三角形边角之间的关系.在直角三角形中,如果已知一边及其中的一个锐角,就可以表示出另外的边.8、B【分析】由一次函数的关系式可以求出与x轴和y轴的交点坐标,即求出OA,OB的长,由正方形的性质,三角形全等可以求出DE、AE、CF、BF的长,进而求出G点的坐标,最后求出CG的长就是n的值.【详解】如图过点D、C分别做DE⊥x轴,CF⊥y轴,垂足分别为E,F.CF交反比例函数的图像于点G.把x=0和y=0分别代入y=-4x+4得y=4和x=1∴A(1,0),B(0,4)∴OA=1,OB=4由ABCD是正方形,易证△AOB≌△DEA≌△BCF(AAS)∴DE=BF=OA=1,AE=CF=OB=4∴D(5,1),F(0,5)把D点坐标代入反比例函数y=,得k=5把y=5代入y=,得x=1,即FG=1CG=CF-FG=4-1=3,即n=3故答案为B.【点睛】本题考查了反比例函数的图像上的坐标特征,正方形的性质,以及全等三角形判断和性质,根据坐标求出线段长是解决问题的关键.9、D【分析】用黄球的个数除以球的总数即为摸到黄球的概率.【详解】∵布袋中装有红、黄、白球分别为2、3、5个,共10个球,从袋中任意摸出一个球共有10种结果,其中出现黄球的情况有3种可能,∴得到黄球的概率是:.故选:D.【点睛】本题考查随机事件概率的求法:如果一个事件有m种可能,而且这些事件的可能性相同,其中事件A出现n种结果,那么事件A的概率P(A)=.10、C【分析】根据表格中的数值计算出函数表达式,从而可判断A选项,利用对称轴公式可计算出对称轴,从而判断其增减性,再根据函数图象及表格中y=3时对应的x,可判断C选项,把对应参数值代入即可判断D选项.【详解】把(-1,-1),(0,3),(1,5)代入得,解得,∴,A.,故本选项正确;B.该函数对称轴为直线,且,函数图象开口向下,所以当时,y随x的增大而减小,故本选项正确;C.由表格可知,当x=0或x=3时,y=3,且函数图象开口向下,所以当y<3时,x<0或x>3,故本选项错误;D.方程为,把x=3代入得-9+6+3=0,所以本选项正确.故选:C.【点睛】本题考查了二次函数表达式求法,二次函数图象与系数的关系,二次函数的性质等知识,“待定系数法”是求函数表达式的常用方法,需熟练掌握.11、D【分析】根据俯视图是从上面看得到的图形进行求解即可.【详解】俯视图为从上往下看,所以小正方形应在大正方形的右上角,故选D.【点睛】本题考查了简单组合体的三视图,熟知俯视图是从上方看得到的图形是解题的关键.12、A【详解】解:∵抛物线向左平移2个单位后的顶点坐标为(﹣2,0),∴所得抛物线的解析式为.故选A.【点睛】本题考查二次函数图象与几何变换,利用数形结合思想解题是关键.二、填空题(每题4分,共24分)13、1【解析】连接OA,设CD为x,由于C点为弧AB的中点,CD⊥AB,根据垂径定理的推理和垂径定理得到CD必过圆心0,即点O、D、C共线,AD=BD=AB=40,在Rt△OAD中,利用勾股定理得(50-x)2+402=502,然后解方程即可.【详解】解:连接OA、如图,设⊙O的半径为R,

∵CD为水深,即C点为弧AB的中点,CD⊥AB,∴CD必过圆心O,即点O、D、C共线,AD=BD=AB=40,

在Rt△OAD中,OA=50,OD=50-x,AD=40,

∵OD2+AD2=OA2,

∴(50-x)2+402=502,解得x=1,

即水深CD约为为1.

故答案为;1【点睛】本题考查了垂径定理的应用:从实际问题中抽象出几何图形,然后垂径定理和勾股定理相结合,构造直角三角形,可解决计算弦长、半径、弦心距等问题.14、1:1【分析】根据∠BAC=90°,可得∠BAD+∠CAD=90°,再根据垂直的定义得到∠ADB=∠CDA=90°,利用三角形的内角和定理可得∠B+∠BAD=90°,根据同角的余角相等得到∠B=∠CAD,利用两对对应角相等两三角形相似得到△ABD∽△CAD,由tanB=tan60°=,再根据相似三角形的面积比等于相似比(对应边的之比)的平方即可求出结果.【详解】:∵∠BAC=90°,

∴∠BAD+∠CAD=90°,

又∵AD⊥BC,

∴∠ADB=∠CDA=90°,

∴∠B+∠BAD=90°,

∴∠B=∠CAD,又∠ADB=∠CDA=90°,

∴△ABD∽△CAD,

∴,

∵∠B=60°,

∴,

∴.

故答案为1:1.【点睛】本题考查了相似三角形的判定与性质,熟练掌握相似比即为对应边之比,周长比等于相似比,面积之比等于相似比的平方是解决问题的关键.15、1、﹣1【分析】试题分析:根据几个式子的积为0,则至少有一个式子为0,即可求得方程的根.【详解】(x﹣1)(x+1)=0x-1=0或x+1=0解得x=1或-1.考点:解一元二次方程点评:本题属于基础应用题,只需学生熟练掌握解一元二次方程的方法,即可完成.16、.【分析】根据题意可以求得和的度数,然后根据图形可知阴影部分的面积就是矩形的面积与矩形中间空白部分的面积之差再加上扇形EAF与的面积之差的和,本题得以解决.【详解】解:连接AE,∵,,,∴,∴,∴,,∴,∴阴影部分的面积是:,故答案为.【点睛】本题考查扇形面积的计算、矩形的性质,解答本题的关键是明确题意,利用数形结合的思想解答.17、直线x=2【解析】试题分析:∵点(1,0),(3,0)的纵坐标相同,∴这两点一定关于对称轴对称,∴对称轴是:x==1考点:二次函数的性质18、【分析】根据题意可知∠ADB=90°,∠ACD=∠ABD,求出∠ABD的正弦就是∠ACD的正弦值.【详解】解:∵是的直径,∴∠ADB=90°∴∠ACD=∠ABD∵的半径是,,∴故答案为:【点睛】本题考查的是锐角三角函数值.三、解答题(共78分)19、8.1m【分析】由题意得,在直角三角形中,知道了两直角边,运用勾股定理即可求出斜边,从而得出这棵树折断之前的高度.【详解】解:如图:,∴,∴木杆折断之前高度故答案为m【点睛】本题考查勾股定理的应用,熟练掌握运算法则是解题关键.20、(1)52;52+x;180;180-10x;(2)1元;(3)2240元【分析】(1)本题先设第二个月的销售定价每套增加x元,再分别求出销售量即可;

(2)本题先设第二个月的销售定价每套增加x元,根据题意找出等量关系列出方程,再把解得的x代入即可.(3)根据利润的表达式化为二次函数的顶点式,即可解答本题.【详解】解:(1)若设第二个月的销售定价每套增加x元,填写下表:时间第一个月第二个月销售定价(元)5252+x销售量(套)180180-10x故答案为:52;52+x;180;180-10x(2)若设第二个月的销售定价每套增加x元,根据题意得:

(52-40)×180+(52+x-40)(180-10x)=411,

解得:x1=-2(舍去),x2=8,

当x=-2时,52+x=50(舍去),

当x=8时,52+x=1.

答:第二个月销售定价每套应为1元.(3)设第二个月利润为y元.

由题意得到:y=(52+x-40)(180-10x)

=-10x2+1x+211

=-10(x-3)2+2250∵-10<0

∴当4≤x≤6时,y随x的增大而减小,∴当x=4时,y取最大值,此时y=2240,

∴52+x=52+4=56,

即要使第二个月利润达到最大,应定价为56元,此时第二个月的最大利润是2240元.【点睛】本题考查了二次函数的应用,解题的关键是明确题意,列出相应的关系式,找出所求问题需要的条件.21、(1),b=6;(2)见解析;(3)∠ABC=45°【分析】(1)根据已知条件求得点A、点B的坐标,再代入二次函数的解析式,即可求得答案;(2)根据列表、描点、依次连接即可画出该二次函数的图像;(3)作AD⊥BC,利用两点之间的距离公式求得的边长,再运用面积法求高的方法求得AD,最后用特殊角的三角函数值求得答案.【详解】(1)∵一次函数的图像与x轴相交于点A,与y轴相交于点B,∴令,则;令,则;∴点A、点B的坐标分别为:,∵二次函数图像经过点A、B,∴,解得:,∴,b=6;(2)由(1)知二次函数的解析式为:对称轴为直线:,与x轴的交点为.x-2-100.5123y0460.25640二次函数的图像如图:(3)如图,过A作AD⊥BC于D,AB=,CB=,,∵,,∴,解得:,在中,,∵,∴.故∠ABC=45°.【点睛】本题考查了一次函数和二次函数的性质,用待定系数法确定函数的解析式,勾股定理以及面积法求高的应用,解此题的关键是运用面积法求高的长,用特殊角的三角函数值求角的大小.22、(1);(2);(3)①;②的取值范围是或.【分析】(1)根据t=3时,A的坐标可以求得是(3,-2),利用待定系数法即可求得抛物线的解析式,则B的坐标可以求得;

(2)△OAB的面积一定,当OA最小时,B到OA的距离即△OAB中OA边上的高最大,此时OA⊥AB,据此即可求解;

(3)①方法一:设AC,BD交于点E,直线l1:y=x-2,与x轴、y轴交于点P和Q(如图1).由点D在抛物线C2:y=[x-(2t-4)]2+(t-2)上,可得=[(t-1)-(2t-4)]2+(t-2),解方程即可得到t的值;

方法二:设直线l1:y=x-2与x轴交于点P,过点A作y轴的平行线,过点B作x轴的平行线,交于点N.(如图2),根据BD⊥AC,可得t-1=2t-,解方程即可得到t的值;

②设直线l1与l2交于点M.随着点A从左向右运动,从点D与点M重合,到点B与点M重合的过程中,可得满足条件的t的取值范围.【详解】解:(1)∵点A在直线l1:y=x-2上,且点A的横坐标为3,

∴点A的坐标为(3,-2),

∴抛物线C1的解析式为y=-x2-2,

∵点B在直线l1:y=x-2上,

设点B的坐标为(x,x-2).

∵点B在抛物线C1:y=-x2-2上,

∴x-2=-x2-2,

解得x=3或x=-1.

∵点A与点B不重合,

∴点B的坐标为(-1,-3),

∴由勾股定理得AB=.

(2)当OA⊥AB时,点B到直线OA的距离达到最大,则OA的解析式是y=-x,则

,解得:,

则点A的坐标为(1,-1).(3)①方法一:设,交于点,直线,与轴、轴交于点和(如图1).则点和点的坐标分别为,.∴.∵.∵轴,∴轴.∴.∵,,∴.∵点在直线上,且点的横坐标为,∴点的坐标为.∴点的坐标为.∵轴,∴点的纵坐标为.∵点在直线上,∴点的坐标为.∴抛物线的解析式为.∵,∴点的横坐标为,∵点在直线上,∴点的坐标为.∵点在抛物线上,∴.解得或.∵当时,点与点重合,∴方法二:设直线l1:y=x-2与x轴交于点P,过点A作y轴的平行线,过点B作x轴的平行线,交于点N.(如图2)

则∠ANB=93°,∠ABN=∠OPB.

在△ABN中,BN=ABcos∠ABN,AN=ABsin∠ABN.

∵在抛物线C1随顶点A平移的过程中,

AB的长度不变,∠ABN的大小不变,

∴BN和AN的长度也不变,即点A与点B的横坐标的差以及纵坐标的差都保持不变.

同理,点C与点D的横坐标的差以及纵坐标的差也保持不变.

由(1)知当点A的坐标为(3,-2)时,点B的坐标为(-1,-3),

∴当点A的坐标为(t,t-2)时,点B的坐标为(t-1,t-3).

∵AC∥x轴,

∴点C的纵坐标为t-2.

∵点C在直线l2:y=x上,

∴点C的坐标为(2t-4,t-2).

令t=2,则点C的坐标为(3,3).

∴抛物线C2的解析式为y=x2.

∵点D在直线l2:y=x上,

∴设点D的坐标为(x,).

∵点D在抛物线C2:y=x2上,

∴=x2.

解得x=或x=3.

∵点C与点D不重合,

∴点D的坐标为(,).

∴当点C的坐标为(3,3)时,点D的坐标为(,).

∴当点C的坐标为(2t-4,t-2)时,点D的坐标为(2t−,t−).

∵BD⊥AC,

∴t−1=2t−.

∴t=.

②t的取值范围是t<或t>4.

设直线l1与l2交于点M.随着点A从左向右运动,从点D与点M重合,到点B与点M重合的过程中,以A,B,C,D为顶点构成的图形不是凸四边形.

【点睛】本题考查了二次函数综合题,掌握待定系数法求得函数的解析式,点到直线的距离,平行于坐标轴的点的特点,方程思想的运用是解题的关键.23、(1);(2)P(2,);(3)点的坐标为或或或.【分析】⑴代入A、B点坐标得出抛物线的交点式y=a(x+4)(x-2),然后代入C点坐标即可求出;⑵首先根据勾股定理可以求出AC=5,通过PE∥y轴,得到△PED∽△AOC,PD:AO=DE:OC=PE:AC,得到PD:4=DE:3=PE:5,PD,DE分别用PE表示,可得△PDE的周长=PE,要使△PDE周长最大,PE取最大值即可;设P点的横坐标a,那么纵坐标为a2+a-3,根据E点在AC所在的直线上,求出解析式,那么E点的横坐标a,纵坐标-a-3,从而求出PE含a的二次函数式,求出PE最大值,进而求出P点坐标及△PDE周长.⑶分类讨论①当BM为对角线时点F在y轴上,根据对称性得到点F的坐标.②当BM为边时,BC也为边时,求出BC长直接可以写出F点坐标,分别是点M在轴负半轴上时,点F的坐标为;点M在轴正半轴上时,点F的坐标为.③当BM为边时,BC也为对角线时,首先求出BC所在直线的解析式,然后求出BC中点的坐标,MF所在直线也经过这点并且与BC所在的直线垂直,所以可以求出MF所在直线的解析式,可以求出M点坐标,求出F点的横坐标,代入MF解析式求出纵坐标,得到F【详解】解:抛物线经过点,它们的坐标分别为,故设其解析式为.又抛物线经过点,代入解得,则抛物线的解析式为.,..又轴,,∴△PDE∽△AOC.,即,∴的周长则要使周长最大,取最大值即可.易得所在直线的解析式为.设点,则,当时,取得最大值,最大值为,则.点的坐标为或或或提示:具体分情况进行讨论,如图.①为对角线时,显然,点在轴上,根据对称性得到点的坐标为;②当为边时,,则有以下几种情况:(I)为边时,点在轴负半轴上

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论