广西南宁四十九中学2025届九年级数学第一学期期末质量检测模拟试题含解析_第1页
广西南宁四十九中学2025届九年级数学第一学期期末质量检测模拟试题含解析_第2页
广西南宁四十九中学2025届九年级数学第一学期期末质量检测模拟试题含解析_第3页
广西南宁四十九中学2025届九年级数学第一学期期末质量检测模拟试题含解析_第4页
广西南宁四十九中学2025届九年级数学第一学期期末质量检测模拟试题含解析_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广西南宁四十九中学2025届九年级数学第一学期期末质量检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.如图,矩形ABCD是由三个全等矩形拼成的,AC与DE、EF、FG、HG、HB分别交于点P、Q、K、M、N,设△EPQ、△GKM、△BNC的面积依次为S1、S2、S1.若S1+S1=10,则S2的值为().A.6 B.8C.10 D.122.若y=(2-m)是二次函数,则m等于()A.±2 B.2 C.-2 D.不能确定3.下列命题正确的是()A.矩形的对角线互相垂直平分B.一组对角相等,一组对边平行的四边形一定是平行四边形C.正八边形每个内角都是D.三角形三边垂直平分线交点到三角形三边距离相等4.如图,AD,BC相交于点O,AB∥CD.若AB=1,CD=2,则△ABO与△DCO的面积之比为A. B. C. D.5.如图,两根竹竿和都斜靠在墙上,测得,则两竹竿的长度之比等于()A. B. C. D.6.反比例函数y=﹣的图象在()A.第一、三象限 B.第一、二象限 C.第二、四象限 D.第三、四象限7.将下列多项式分解因式,结果中不含因式x﹣1的是()A.x2﹣1 B.x2+2x+1 C.x2﹣2x+1 D.x(x﹣2)﹣(x﹣2)8.矩形ABCD中,AB=10,,点P在边AB上,且BP:AP=4:1,如果⊙P是以点P为圆心,PD长为半径的圆,那么下列结论正确的是()A.点B、C均在⊙P外 B.点B在⊙P外,点C在⊙P内C.点B在⊙P内,点C在⊙P外 D.点B、C均在⊙P内9.如图,正方形OABC的两边OA、OC分别在x轴、y轴上,点D(5,3)在边AB上,以C为中心,把CDB旋转90°,则旋转后点D的对应点的坐标是()A.(2,10) B.(﹣2,0)C.(2,10)或(﹣2,0) D.(10,2)或(﹣2,0)10.sin30°的值为()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,点A、B、C是⊙O上的点,且∠ACB=40°,阴影部分的面积为2π,则此扇形的半径为______.12.同时抛掷两枚质地均匀的硬币,则两枚硬币全部正面向上的概率是.13.如图,已知⊙O的半径为10,AB⊥CD,垂足为P,且AB=CD=16,则OP=_____.14.一个三角形的三边之比为,与它相似的三角形的周长为,则与它相似的三角形的最长边为____________.15.已知两个相似三角形的周长比是,它们的面积比是________.16.如图,△ABC中,AB>AC,D,E两点分别在边AC,AB上,且DE与BC不平行.请填上一个你认为合适的条件:_____,使△ADE∽△ABC.(不再添加其他的字母和线段;只填一个条件,多填不给分!)17.Rt△ABC中,已知∠C=90°,∠B=50°,点D在边BC上,BD=2CD(如图).把△ABC绕着点D逆时针旋转m(0<m<180)度后,如果点B恰好落在初始Rt△ABC的边上,那么m=______.18.如图是一个圆环形黄花梨木摆件的残片,为求其外圆半径,小林在外圆上任取一点A,然后过点A作AB与残片的内圆相切于点D,作CD⊥AB交外圆于点C,测得CD=15cm,AB=60cm,则这个摆件的外圆半径是_____cm.三、解答题(共66分)19.(10分)如图,中,,以为直径作,交于点,交于点.(1)求证:.(2)若,求的度数.20.(6分)如图,将△ABC绕点C顺时针旋转得到△DEC,使点A的对应点D恰好落在边AB上,点B的对应点为E,连接BE.(Ⅰ)求证:∠A=∠EBC;(Ⅱ)若已知旋转角为50°,∠ACE=130°,求∠CED和∠BDE的度数.21.(6分)如图,在矩形ABCD中,E为AD边上的一点,过C点作CF⊥CE交AB的延长线于点F.(1)求证:△CDE∽△CBF;(2)若B为AF的中点,CB=3,DE=1,求CD的长.22.(8分)如图,已知A(-1,0),一次函数的图像交坐标轴于点B、C,二次函数的图像经过点A、C、B.点Q是二次函数图像上一动点。(1)当时,求点Q的坐标;(2)过点Q作直线//BC,当直线与二次函数的图像有且只有一个公共点时,求出此时直线对应的一次函数的表达式并求出此时直线与直线BC之间的距离。23.(8分)如图1,△ABC是等边三角形,点D在BC上,BD=2CD,点F是射线AC上的动点,点M是射线AD上的动点,∠AFM=∠DAB,FM的延长线与射线AB交于点E,设AM=x,△AME与△ABD重叠部分的面积为y,y与x的函数图象如图2所示(其中0<x≤m,m<x<n,x≥n时,函数的解析式不同).(1)填空:AB=_______;(2)求出y与x的函数关系式,并求出x的取值范围.24.(8分)定义:若一个四边形能被其中一条对角线分割成两个相似三角形,则称这个四边形为“友好四边形”.(1)如图1,在的正方形网格中,有一个网格和两个网格四边形与,其中是被分割成的“友好四边形”的是;(2)如图2,将绕点逆时针旋转得到,点落在边,过点作交的延长线于点,求证:四边形是“友好四边形”;(3)如图3,在中,,,的面积为,点是的平分线上一点,连接,.若四边形是被分割成的“友好四边形”,求的长.25.(10分)如图,双曲线()与直线交于点和,连接和.(1)求双曲线和直线的函数关系式.(2)观察图像直接写出:当时,的取值范围.(3)求的面积.26.(10分)已知:如图,在中,是边上的高,且,,,求的长.

参考答案一、选择题(每小题3分,共30分)1、D【分析】根据矩形的性质和平行四边形的性质判断出△AQE∽△AMG∽△ACB,得到,,再通过证明得到△PQE∽△KMG∽△NCB,利用面积比等于相似比的平方,得到S1、S2、S1的关系,进而可得到答案.【详解】解:∵矩形ABCD是由三个全等矩形拼成的,

∴AE=EG=GB=DF=FH=HC,∠AEQ=∠AGM=∠ABC=90°,AB∥CD,AD∥EF∥GH∥BC∴∠AQE=∠AMG=∠ACB,

∴△AQE∽△AMG∽△ACB,

∴,∵EG=DF=GB=FHAB∥CD,(已证)∴四边形DEGF,四边形FGBH是平行四边形,∴DE∥FG∥HB∴∠QPE=∠MKG=∠CNB,∴△PQE∽△KMG∽△NCB

∴,

∴,

∵S1+S1=10,∴S2=2.

故选:D.【点睛】本题考查了矩形的性质、平行四边形的性质、三角形相似的性质的综合应用,能找到对应边的比是解答此题的关键.2、C【解析】分析:根据二次函数的定义,自变量指数为2,且二次项系数不为0,列出方程与不等式求解则可.解答:解:根据二次函数的定义,得:m2-2=2解得m=2或m=-2又∵2-m≠0∴m≠2∴当m=-2时,这个函数是二次函数.故选C.3、B【分析】根据矩形的性质、平行四边形的判定、多边形的内角和及三角形垂直平分线的性质,逐项判断即可.【详解】A.矩形的对角线相等且互相平分,故原命题错误;B.已知如图:,,求证:四边形ABCD是平行四边形.证明:∵,∴,∵,∴,∴,又∵,∴四边形ABCD是平行四边形,∴一组对角相等,一组对边平行的四边形一定是平行四边形,故原命题正确;C.正八边形每个内角都是:,故原命题错误;D.三角形三边垂直平分线交点到三角形三个顶点的距离相等,故原命题错误.故选:B.【点睛】本题考查命题的判断,明确矩形性质、平行四边形的判定定理、多边形内角和公式及三角形垂直平分线的性质是解题关键.4、B【解析】根据相似三角形的判定与性质即可求出答案.【详解】∵AB∥CD,∴△AOB∽△DOC,∵,∴,故选B.【点睛】本题考查相似三角形,解题的关键是熟练运用相似三角形的性质与判定,本题属于基础题型.5、D【分析】在两个直角三角形中,分别求出AB、AD即可解决问题.【详解】根据题意:在Rt△ABC中,,则,在Rt△ACD中,,则,∴.故选:D.【点睛】本题考查了解直角三角形的应用、锐角三角函数等知识,解题的关键是学会利用参数解决问题.6、C【分析】根据反比例函数中k0,图像必过二、四象限即可解题.【详解】解:∵-10,根据反比例函数性质可知,反比例函数y=﹣的图象在第二、四象限,故选C.【点睛】本题考查了反比例函数的图像和性质,属于简单题,熟悉反比例函数的性质是解题关键.7、B【分析】原式各项分解后,即可做出判断.【详解】A、原式=(x+1)(x-1),含因式x-1,不合题意;

B、原式=(x+1)2,不含因式x-1,符合题意;

C、原式=(x-1)2,含因式x-1,不合题意;

D、原式=(x-2)(x-1),含因式x-1,不合题意,

故选:B.【点睛】此题考查因式分解-运用公式法,提公因式法,熟练掌握因式分解的方法是解题的关键.8、A【分析】根据BP=4AP和AB的长度求得AP的长度,然后利用勾股定理求得圆P的半径PD的长;根据点B、C到P点的距离判断点P与圆的位置关系即可【详解】根据题意画出示意图,连接PC,PD,如图所示∵AB=10,点P在边AB上,BP:AP=4:1∴AP=2,BP=8又∵AD=∴圆的半径PD=PC=∵PB=8>6,PC=>6∴点B、C均在⊙P外故答案为:A【点睛】本题考查了点和圆的位置关系的判定,根据点和圆心之间的距离和半径的大小关系作出判断即可9、C【分析】分顺时针旋转和逆时针旋转两种情况讨论解答即可.【详解】解:∵点D(5,3)在边AB上,∴BC=5,BD=5﹣3=2,①若顺时针旋转,则点在x轴上,O=2,所以,(﹣2,0),②若逆时针旋转,则点到x轴的距离为10,到y轴的距离为2,所以,(2,10),综上所述,点的坐标为(2,10)或(﹣2,0).故选:C.【点睛】本题考查了坐标与图形变化﹣旋转,正方形的性质,难点在于分情况讨论.10、C【分析】直接利用特殊角的三角函数值求出答案.【详解】解:sin30°=故选C【点睛】此题主要考查了特殊角的三角函数值,正确记忆相关特殊角的三角函数值是解题关键.二、填空题(每小题3分,共24分)11、3【解析】根据圆周角定理可求出∠AOB的度数,设扇形半径为x,从而列出关于x的方程,求出答案.【详解】由题意可知:∠AOB=2∠ACB=2×40°=80°,设扇形半径为x,故阴影部分的面积为πx2×=×πx2=2π,故解得:x1=3,x2=-3(不合题意,舍去),故答案为3.【点睛】本题主要考查了圆周角定理以及扇形的面积求解,解本题的要点在于根据题意列出关于x的方程,从而得到答案.12、.【解析】试题分析:画树状图为:共有4种等可能的结果数,其中两枚硬币全部正面向上的结果数为1,所以两枚硬币全部正面向上的概率=.故答案为.考点:列表法与树状图法.13、6【分析】根据题意作出合适的辅助线,然后根据垂径定理、勾股定理即可求得OP的长,本题得以解决.【详解】解:作OE⊥AB交AB与点E,作OF⊥CD交CD于点F,连接OB,如图所示,则AE=BE,CF=DF,∠OFP=∠OEP=∠OEB=90°,又∵圆O的半径为10,AB⊥CD,垂足为P,且AB=CD=16,∴∠FPE=90°,OB=10,BE=8,∴四边形OEPF是矩形,OE==6,同理可得,OF=6,∴EP=6,∴OP=,故答案为:.【点睛】本题考查垂径定理、勾股定理,解答本题的关键是明确题意,利用数形结合的思想解答.14、18cm.【分析】由一个三角形的三边之比为3:6:4,可得与它相似的三角形的三边之比为3:6:4,又由与它相似的三角形的周长为39cm,即可求得答案.【详解】解:∵一个三角形的三边之比为3:6:4,∴与它相似的三角形的三边之比为3:6:4,∵与它相似的三角形的周长为39cm,∴与它相似的三角形的最长边为:39×=18(cm).

故答案为:18cm.【点睛】此题考查了相似三角形的性质.此题比较简单,注意相似三角形的对应边成比例.15、【解析】根据相似三角形的性质直接解答即可.解:∵两个相似三角形的周长比是1:3,∴它们的面积比是,即1:1.故答案为1:1.本题考查的是相似三角形的性质,即相似三角形(多边形)的周长的比等于相似比;面积的比等于相似比的平方.16、∠B=∠1或【解析】此题答案不唯一,注意此题的已知条件是:∠A=∠A,可以根据有两角对应相等的三角形相似或有两边对应成比例且夹角相等三角形相似,添加条件即可.【详解】此题答案不唯一,如∠B=∠1或.∵∠B=∠1,∠A=∠A,∴△ADE∽△ABC;∵,∠A=∠A,∴△ADE∽△ABC;故答案为∠B=∠1或【点睛】此题考查了相似三角形的判定:有两角对应相等的三角形相似;有两边对应成比例且夹角相等三角形相似,要注意正确找出两三角形的对应边、对应角,根据判定定理解题.17、80°或120°【分析】本题可以图形的旋转问题转化为点B绕D点逆时针旋转的问题,故可以D点为圆心,DB长为半径画弧,第一次与原三角形交于斜边AB上的一点B′,交直角边AC于B″,此时DB′=DB,DB″=DB=2CD,由等腰三角形的性质求旋转角∠BDB′的度数,在Rt△B″CD中,解直角三角形求∠CDB″,可得旋转角∠BDB″的度数.【详解】解:如图,在线段AB取一点B′,使DB=DB′,在线段AC取一点B″,使DB=DB″,∴①旋转角m=∠BDB′=180°-∠DB′B-∠B=180°-2∠B=80°,②在Rt△B″CD中,∵DB″=DB=2CD,∴∠CDB″=60°,旋转角∠BDB″=180°-∠CDB″=120°.故答案为80°或120°.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.运用含30度的直角三角形三边的关系也是解决问题的关键.18、37.1【分析】根据垂径定理求得AD=30cm,然后根据勾股定理得出方程,解方程即可求得半径.【详解】如图,设点O为外圆的圆心,连接OA和OC,∵CD=11cm,AB=60cm,∵CD⊥AB,∴OC⊥AB,∴AD=AB=30cm,∴设半径为rcm,则OD=(r﹣11)cm,根据题意得:r2=(r﹣11)2+302,解得:r=37.1,∴这个摆件的外圆半径长为37.1cm,故答案为37.1.【点睛】本题考查了垂径定理的应用以及勾股定理的应用,作出辅助线构建直角三角形是解本题的关键.三、解答题(共66分)19、(1)证明见解析;(2)80°【分析】(1)连接AD,根据圆周角定理和等腰三角形的三线合一,可得,利用相等的圆周角所对的弧相等即可得证;(2)连接BE,利用同弧所对的圆周角相等可得,再利用等腰三角形的性质可求得利用圆周角定理即可求解.【详解】解:(1)连接AD,,∵为的直径,∴,即,∵在中,,∴,∴;(2)连接BE,,∵,∴,,∵,∴,∴的度数为.【点睛】本题考查圆周角定理,等腰三角形的性质,弧、弦、圆心角和圆周角之间的关系,熟练应用圆的基本性质定理是解题的关键.20、(Ⅰ)证明见解析;(Ⅱ)∠BDE=50°,∠CED=35°【分析】(Ⅰ)由旋转的性质可得AC=CD,CB=CE,∠ACD=∠BCE,由等腰三角形的性质可求解.(Ⅱ)由旋转的性质可得AC=CD,∠ABC=∠DEC,∠ACD=∠BCE=50°,∠EDC=∠A,由三角形内角和定理和等腰三角形的性质可求解.【详解】证明:(Ⅰ)∵将△ABC绕点C顺时针旋转得到△DEC,∴AC=CD,CB=CE,∠ACD=∠BCE,∴∠A=,∠CBE=,∴∠A=∠EBC;(Ⅱ)∵将△ABC绕点C顺时针旋转得到△DEC,∴AC=CD,∠ABC=∠DEC,∠ACD=∠BCE=50°,∠EDC=∠A,∠ACB=∠DCE∴∠A=∠ADC=65°,∵∠ACE=130°,∠ACD=∠BCE=50°,∴∠ACB=∠DCE=80°,∴∠ABC=180°﹣∠BAC﹣∠BCA=35°,∵∠EDC=∠A=65°,∴∠BDE=180°﹣∠ADC﹣∠CDE=50°.∠CED=180°﹣∠DCE﹣∠CDE=35°【点睛】本题主要考查旋转的性质,解题的关键是掌握旋转的性质:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形全等.21、(1)证明见解析;(2)CD=【分析】(1)如图,通过证明∠D=∠1,∠2=∠4即可得;(2)由△CDE∽△CBF,可得CD:CB=DE:BF,根据B为AF中点,可得CD=BF,再根据CB=3,DE=1即可求得.【详解】(1)∵四边形ABCD是矩形,∴∠D=∠1=∠2+∠3=90°,∵CF⊥CE,∴∠4+∠3=90°,∴∠2=∠4,∴△CDE∽△CBF;(2)∵四边形ABCD是矩形,∴CD=AB,∵B为AF的中点,∴BF=AB,∴设CD=BF=x,∵△CDE∽△CBF,∴,∴,∵x>0,∴x=,即:CD=.【点睛】本题考查了相似三角形的判定与性质:有两组角对应相等的两个三角形相似;两个三角形相似对应角相等,对应边的比相等.也考查了矩形的性质22、(1)Q(0,2)或(3,2)或Q(,-2)或Q(,-2);(2)一次函数,此时直线与直线BC之间的距离为【分析】(1)根据可求得Q点的纵坐标,将Q点的纵坐标代入求得的二次函数解析式中求出Q点的横坐标,即可求得Q点的坐标;(2)根据两直线平行可得直线l的一次项系数,因为直线与抛物线只有一个交点,所以联立它们所形成的方程组有两个相同的解可求得直线l的常数项,即可得到它的解析式.利用等面积法可求得原点距离两直线的距离,距离差即为直线与直线BC之间的距离.【详解】解:(1)对于一次函数,当x=0时,y=2,所以C(0,2),当y=0时,x=4,所以B(4,0).∴.∴则,将A、B带入二次函数解析式得,解得,∴二次函数解析式为:,当y=2时,,解得,所以,当y=-2时,,解得,所以,故Q(0,2)或(3,2)或Q(,-2)或Q(,-2).(2)根据题意设一次函数,∵直线与二次函数的图像有且只有一个公共点∴只有一个解,整理得,∴,解得b=4,∴一次函数如下图,直线l与坐标轴分别相交于D,E,过O作直线BC的垂线与BC和DE相交于F和G,对于一次函数,当x=0时,y=4,故D(0,4),当y=0时,x=8,故E(8,0).∴,,即,解得,,即,解得,∴.∴此时直线与直线BC之间的距离为.【点睛】本题考查一次函数与二次函数的综合应用.(1)中能利用求得Q点的纵坐标是解决此问的关键;(2)中需理解①两个一次函数平行k值相等;②一次函数与二次函数交点的个数取决于联立它们所形成的一元二次方程的解得个数;③掌握等面积法在实际问题中的应用.23、(1)6;(2)【分析】(1)作高,由图象得出△ABD的面积,再由BD=2CD,得出△ABC的面积,利用三角形的面积公式求解即可;(2)先求出,,,的值,再利用勾股定理可得AD的值,再利用三角形相似,分类讨论,求解即可.【详解】(1)解:如图1,过点A作AH⊥BC,垂足为H,则,,由图象可知.由,可知,.是等边三角形,可知,,,,得.(2)解:如图2,作高,则,,由图象可知.由,可知,.是等边三角形,可知,,,,得.,,,.由勾股定理可得,.由,可得,,,.当点与点重合时,,.当时,如图1,,,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论