下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题18隐形圆及最值问题本文主要从以下四个方面去介绍:一、从圆的定义构造圆(折叠类问题)二、定边对直角三、定边对定角四、四点共圆一、从圆的定义构造圆(折叠类问题)圆的定义:平面内到定点的距离等于定值的所有点构成的集合.构造思路:若动点到平面内某定点的距离始终为定值,则其轨迹是圆或圆弧.1、几个点到某个定点距离相等可用圆(定点为圆心,相等距离为半径)例:如图,若AB=OA=OB=OC,则∠ACB的大小是_______例:如图,已知AB=AC=AD,∠CBD=2∠BDC,∠BAC=44°,则∠CAD的度数为__________2、动点到定点距离保持不变的可用圆(先确定定点,定点为圆心,动点到定点的距离为半径)例:木杆AB斜靠在墙壁上,当木杆的上端A沿墙壁NO竖直下滑时,木杆的底端B也随之沿着射线OM方向滑动.下列图中用虚线画出木杆中点P随之下落的路线,其中正确的是()如图,在中,,,,点在边上,并且,点为边上的动点,将沿直线翻折,点落在点处,则点到边距离的最小值是.二、定边对直角知识回顾:直径所对的圆周角是直角.构造思路:一条定边所对的角始终为直角,则直角顶点轨迹是以定边为直径的圆或圆弧.图形释义:例:若AB是一条定线段,且∠APB=90°,则P点轨迹是以AB为直径的圆.如图,在中,,cm,cm.是边上的一个动点,连接,过点作于,连接,在点变化的过程中,线段的最小值是()A.1 B. C.2 D.例:如图,△ACB中,CA=CB=4,∠ACB=90°,点P为CA上的动点,连BP,过点A作AM⊥BP于M.当点P从点C运动到点A时,线段BM的中点N运动的路径长为()A.π B.π C.π D.2π三、定边对定角在“定边对直角”问题中,依据“直径所对的圆周角是直角”,关键性在于寻找定边、直角,而根据圆周角定理:同圆或等圆中,同弧或等弧所对的圆周角都相.定边必不可少,而直角则可一般为定角.例如,AB为定值,∠P为定角,则P点轨迹是一个圆.例:(2018•日照)如图,已知点,,在抛物线上.(1)求抛物线解析式;(2)在直线上方的抛物线上求一点,使面积为1;(3)在轴下方且在抛物线对称轴上,是否存在一点,使?若存在,求出点坐标;若不存在,说明理由.四、四点共圆若平面上A、B、C、D四个点满足,则A、B、C、D在以AD中点E为圆心、EA长为半径的圆上(可证).若平面上A、B、C、D四个点满足,则A、B、C、D在以AC中点E为圆心、EA为半径的圆上(可证).若平面上A、B、C、D四个点满足,则A、B、C、D四点共圆.证明条件:线段同侧张角相等.若平面上A、B、C、D四个点满足,则A、B、C、D四点共圆.证明条件:1.四边形对角互补;2.四边形外角等于内对角.两条线段被一点分成(内分或外分)两段长的乘积相等,则这两条线段的四个端点共圆.四边形ABCD的对角线AC、BD交于H,若,则四点共圆.四边形ABCD的对边BA、CD的延长线交于P,若,则四点共圆.如图1,在四边形ABCD中,,,,,则______________.(2)如图2,在的边AB、AC上分别取点Q、P,使得.求证:.图1图2例:如图,在△ABC中,∠ACB=90°,AC=BC,AB=4cm,CD是中线,点E、F同时从点D出发,以相同的速度分别沿DC、DB方向移动,当点E到达点C时,运动停止,直线AE分别与CF、BC相交于G、H,则在点E、F移动过程中,点G移动路线的长度为()A.2 B.π C.2π D.π圆中最值问题方法总结:圆中求最值的方法:(在圆中,注意圆的半径长为定值,要围绕半径构造模型解题)
①结合半径,利用垂线段最短直接构造直角三角形求解,如T1,T2;②根据圆的对称性,将线段转换到一起,再利用两点之间线段最短求解,如T3,T10;
③利用直径是圆中最长的弦求解,如T5;
④寻找隐含条件(如中位线、直角三角形斜边上的中线等),构造直角三角形或隐圆解题,如T6,T9.
1.如图,等边的边长为2,的半径为1,是上的动点,与相切于,的最小值是A.1B.C.D.22.如图,在中,弦,点在上移动,连接,过点作交于点,则的最大值为.3.如图点是半圆上一个三等分点(靠近点这一侧),点是弧的中点,点是直径上的一个动点,若半径为3,则的最小值为.4.如图,是的内接三角形,且是的直径,点为上的动点,且,的半径为6,则点到距离的最大值是.5.如图,是的弦,,点是上的一个动点,且,若点、分别是、的中点,则的最大值是.6.如图,在平面直角坐标系中,已知,以点为圆心的圆与轴相切.点、在轴上,且.点为上的动点,,则长度的最大值为.7.已知点是圆心为坐标原点且半径为3的圆上的动点,经过点作直线轴,点是直线上的动点,若,则的面积的最大值为.8.如图,已知的半径为,点为直径延长线上一点,.过点任作一直线,若上总存在点,使过所作的的两切线互相垂直,则的最大值
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 离职协议书可以领失业金
- 纺织用工合同协议书
- 房屋租赁合同拖欠房租解除告知函
- 第四章 建设工程合同法律原理与实务-授课教师 吴超兴-1733553549208
- 母乳皂课件讲解
- 《客户服务沟通技巧》课件
- 八年级语文下册《醉翁亭记》课件2人教版 2
- 《雄激素与男科疾病》课件
- 小学六年级下册科学课件教科版第2课时 月相变化
- 小学六年级科学课件教科版第7课 信息的交流传播
- 皮带机安装方案
- 学生会公寓部工作总结
- 设备安全调试维修作业安全培训
- 苏轼的坎坷一生(被贬路线)课件
- 2024年心理咨询师题库及参考答案(考试直接用)
- 天津大学2022年839物理化学考研真题(含答案)
- 物理化学习题库及答案
- 起重吊装作业安全检查范文
- 小学校本课程《跳绳》教材
- 《Baby》Justin-Bieber版歌词完整版打印下载打印
- 公司业务拓展方案
评论
0/150
提交评论