广州市白云区2025届九上数学期末质量跟踪监视试题含解析_第1页
广州市白云区2025届九上数学期末质量跟踪监视试题含解析_第2页
广州市白云区2025届九上数学期末质量跟踪监视试题含解析_第3页
广州市白云区2025届九上数学期末质量跟踪监视试题含解析_第4页
广州市白云区2025届九上数学期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广州市白云区2025届九上数学期末质量跟踪监视试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.反比例函数,下列说法不正确的是()A.图象经过点(1,﹣1) B.图象位于第二、四象限C.图象关于直线y=x对称 D.y随x的增大而增大2.若2y-7x=0,则x∶y等于()A.2∶7 B.4∶7 C.7∶2 D.7∶43.将化成的形式为()A. B.C. D.4.设A(﹣2,y1),B(1,y2),C(2,y3)是抛物线y=﹣(x+1)2+a上的三点,则y1,y2,y3的大小关系为()A.y1>y2>y3 B.y1>y3>y2 C.y3>y2>y1 D.y3>y1>y25.如图,在△ABC中,D、E分别是BC、AC上的点,且DE∥AB,若S△CDE:S△BDE=1:3,则S△CDE:S△ABE=()A.1:9 B.1:12C.1:16 D.1:206.要使根式有意义,x的取值范围是()A.x≠0 B.x≠1 C. D.7.如图,点E、F是边长为4的正方形ABCD边AD、AB上的动点,且AF=DE,BE交CF于点P,在点E、F运动的过程中,PA的最小值为()A.2 B.2 C.4﹣2 D.2﹣28.如图,在平面直角坐标系中,直线与x轴交于点A,与y轴交于点B,点C是AB的中点,∠ECD绕点C按顺时针旋转,且∠ECD=45°,∠ECD的一边CE交y轴于点F,开始时另一边CD经过点O,点G坐标为(-2,0),当∠ECD旋转过程中,射线CD与x轴的交点由点O到点G的过程中,则经过点B、C、F三点的圆的圆心所经过的路径长为()A. B. C. D.9.下列命题是真命题的是()A.在同圆或等圆中,等弧所对的圆周角相等B.平分弦的直径垂直于弦C.在同圆或等圆中,等弦所对的圆周角相等D.三角形外心是三条角平分线的交点10.二次函数y=(x﹣1)2+2,它的图象顶点坐标是()A.(﹣2,1) B.(2,1) C.(2,﹣1) D.(1,2)二、填空题(每小题3分,共24分)11.如图,点D、E分别是线段AB、AC上一点∠AED=∠B,若AB=8,BC=7,AE=5则,则DE=_____.12.如图,在中,,是边上的中线,,则的长是__________.13.小华在距离路灯6米的地方,发现自己在地面上的影长是2米,若小华的身高为1.6米,那么路灯离地面的高度是_____米.14.抛物线的顶点坐标是___________.15.如图,已知正方形ABCD的边长是4,点E是AB边上一动点,连接CE,过点B作BG⊥CE于点G,点P是AB边上另一动点,则PD+PG的最小值为_____.16.已知a=3+2,b=3-2,则a2b+ab2=_________.17.如图,正六边形ABCDEF内接于⊙O,⊙O的半径为6,则这个正六边形的边心距OM的长为__.18.如图,已知圆周角∠ACB=130°,则圆心角∠AOB=______.三、解答题(共66分)19.(10分)若关于x的方程有两个相等的实数根(1)求b的值;(2)当b取正数时,求此时方程的根,20.(6分)如图,在平面直角坐标系中,△ABC的三个顶点都在格点上(每个小方格都是边长为一个单位长度的正方形).(1)请画出△ABC关于原点对称的△A1B1C1;(1)请画出△ABC绕点B逆时针旋转90°后的△A1B1C1.21.(6分)为了“城市更美好、人民更幸福”,我市开展“三城联创”活动,环卫部门要求垃圾按三类分别装袋、投放,其中类指废电池,过期药品等有毒垃圾,类指剩余食品等厨余垃圾,类指塑料、废纸等可回收垃圾,甲、乙两人各投放一袋垃圾.(1)甲投放的垃圾恰好是类的概率是;(2)用树状图或表格求甲、乙两人投放的垃圾是不同类别的概率.22.(8分)如图,⊙O的直径AB与弦CD相交于点E,且DE=CE,⊙O的切线BF与弦AD的延长线交于点F.(1)求证:CD∥BF;(2)若⊙O的半径为6,∠A=35°,求的长.23.(8分)己知:如图,抛物线与坐标轴分别交于点,点是线段上方抛物线上的一个动点,(1)求抛物线解析式:(2)当点运动到什么位置时,的面积最大?24.(8分)如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB的中点,(1)求证:AC2=AB•AD.(2)求证:CE∥AD;(3)若AD=4,AB=6,求AF的值.25.(10分)如图,在中,对角线AC与BD相交于点O,,,.求证:四边形ABCD是菱形.26.(10分)函数与函数(、为不等于零的常数)的图像有一个公共点,其中正比例函数的值随的值增大而减小,求这两个函数的解析式.

参考答案一、选择题(每小题3分,共30分)1、D【分析】反比例函数y=(k≠0)的图象k>0时位于第一、三象限,在每个象限内,y随x的增大而减小;k<0时位于第二、四象限,在每个象限内,y随x的增大而增大;在不同象限内,y随x的增大而增大,根据这个性质选择则可.【详解】A、图象经过点(1,﹣1),正确;B、图象位于第二、四象限,故正确;C、双曲线关于直线y=x成轴对称,正确;D、在每个象限内,y随x的增大而增大,故错误,故选:D.【点睛】此题考查反比例函数的性质,熟记性质并运用解题是关键.2、A【分析】由2y-7x=0可得2y=7x,再根据等式的基本性质求解即可.【详解】解:∵2y-7x=0∴2y=7x∴x∶y=2∶7故选A.【点睛】比例的性质,根据等式的基本性质2进行计算即可,是基础题,比较简单.3、C【分析】本小题先将二次项的系数提出后再将括号里运用配方法配成完全平方式即可.【详解】由得:故选C【点睛】本题考查的知识点是配方法,掌握配方的方法及防止漏乘是关键.4、A【分析】根据函数解析式画出抛物线以及在图象上标出三个点的位置,根据二次函数图像的增减性即可得解.【详解】∵函数的解析式是,如图:∴对称轴是∴点关于对称轴的点是,那么点、、都在对称轴的右边,而对称轴右边随的增大而减小,于是.故选:A.【点睛】本题考查了二次函数图象的对称性以及增减性,画出函数图像是解题的关键,根据题意画出函数图象能够更直观的解答.5、B【分析】由S△CDE:S△BDE=1:3得CD:BD=1:3,进而得到CD:BC=1:4,然后根据DE∥AB可得△CDE∽△CAB,利用相似三角形的性质得到,然后根据面积和差可求得答案.【详解】解:过点H作EH⊥BC交BC于点H,∵S△CDE:S△BDE=1:3,∴CD:BD=1:3,∴CD:BC=1:4,∵DE∥AB,∴△CDE∽△CBA,∴,∵S△ABC=S△CDE+S△BDE+S△ABE,∴S△CDE:S△ABE=1:12,故选:B.【点睛】本题综合考查相似三角形的判定与性质,三角形的面积等知识,解题关键是掌握相似三角形的判定与性质.6、D【分析】根据二次根式的性质,被开方数大于或等于0,可知当x-1≥0时,二次根式有意义.【详解】要使有意义,只需x-1≥0,解得x≥1.故选D.【点睛】本题考查二次根式定义中被开方数的取值范围.二次根式定义中要求被开方数是非负数,经常出现的问题是有的同学误认为是被开方数中的x是非负数,如中x的取值范围写为x≥0,因此学习二次根式时需特别注意.7、D【分析】根据直角三角形斜边上的中线等于斜边的一半,取BC的中点O,连接OP、OA,然后求出OP=CB=1,利用勾股定理列式求出OA,然后根据三角形的三边关系可知当O、P、A三点共线时,AP的长度最小.【详解】解:在正方形ABCD中,∴AB=BC,∠BAE=∠ABC=90°,在△ABE和△BCF中,∵,∴△ABE≌△BCF(SAS),∴∠ABE=∠BCF,∵∠ABE+∠CBP=90°∴∠BCF+∠CBP=90°∴∠BPC=90°如图,取BC的中点O,连接OP、OA,则OP=BC=1,在Rt△AOB中,OA=,根据三角形的三边关系,OP+AP≥OA,∴当O、P、A三点共线时,AP的长度最小,AP的最小值=OA﹣OP=﹣1.故选:D.【点睛】本题考查了正方形的性质,全等三角形的判定与性质,直角三角形斜边上的中线等于斜边的一半的性质,三角形的三边关系.确定出AP最小值时点P的位置是解题关键,也是本题的难点.8、A【解析】先确定点B、A、C的坐标,①当点G在点O时,点F的坐标为(0,2),此时点F、B、C三点的圆心为BC的中点,坐标为(1,3);②当直线OD过点G时,利用相似求出点F的坐标,根据圆心在弦的垂直平分线上确定圆心在线段BC的垂直平分线上,故纵坐标为,利用两点间的距离公式求得圆心的坐标,由此可求圆心所走的路径的长度.【详解】∵直线与x轴交于点A,与y轴交于点B,∴B(0,4),A(4,0),∵点C是AB的中点,∴C(2,2),①当点G在点O时,点F的坐标为(0,2),此时点F、B、C三点的圆心为BC的中点,坐标为(1,3);②当直线OD过点G时,如图,连接CN,OC,则CN=ON=2,∴OC=,∵G(-2,0),∴直线GC的解析式为:,∴直线GC与y轴交点M(0,1),过点M作MH⊥OC,∵∠MOH=45,∴MH=OH=,∴CH=OC-OH=,∵∠NCO=∠FCG=45,∴∠FCN=∠MCH,又∵∠FNC=∠MHC,∴△FNC∽△MHC,∴,即,得FN=,∴F(,0),此时过点F、B、C三点的圆心在BF的垂直平分线上,设圆心坐标为(x,),则,解得,当∠ECD旋转过程中,射线CD与x轴的交点由点O到点G的过程中,则经过点B、C、F三点的圆的圆心所经过的路径为线段,即由BC的中点到点(,),∴所经过的路径长=.故选:A.【点睛】此题是一道综合题,考查一次函数的性质,待定系数法求函数的解析式,相似三角形的判定及性质定理,两点间的距离公式,综合性比较强,做题时需时时变换思想来解题.9、A【分析】根据圆的性质,垂径定理,圆周角定理,三角形外心的定义,对照选项逐一分析即可.【详解】解:A.在同圆或等圆中,等弧所对的圆周角相等,是真命题;B.平分弦(弦不是直径)的直径垂直于弦,故原命题是假命题;C.在同圆或等圆中,等弦所对的圆周角相等,弦对着两个圆周角,故是假命题;D.三角形外心是三条边垂直平分线的交点,故是假命题;故选:A.【点睛】本题考查了圆的性质,垂径定理,圆周角定理,三角形外心的定义,掌握圆的性质和相关定理内容是解题的关键.10、D【解析】二次函数的顶点式是,,其中是这个二次函数的顶点坐标,根据顶点式可直接写出顶点坐标.【详解】解:故选:D.【点睛】根据抛物线的顶点式,可确定抛物线的开口方向,顶点坐标(对称轴),最大(最小)值,增减性等.二、填空题(每小题3分,共24分)11、【分析】先根据题意得出△AED∽△ABC,再由相似三角形的性质即可得出结论.【详解】∵∠A=∠A,∠AED=∠B,∴△AED∽△ABC,∴,∵AB=8,BC=7,AE=5,∴,解得ED=.故答案为:.【点睛】本题考查的是相似三角形的判定与性质,熟知相似三角形的对应边成比例是解答此题的关键.12、10【分析】根据直角三角形斜边中线等于斜边的一半直接求解即可.【详解】解:∵在中,,是边上的中线∴∴AB=2CD=10故答案为:10【点睛】本题考查直角三角形斜边中线等于斜边的一半,掌握直角三角形的性质是本题的解题关键.13、6.1【解析】解:设路灯离地面的高度为x米,根据题意得:,解得:x=6.1.故答案为6.1.14、(1,﹣4).【解析】解:∵原抛物线可化为:y=(x﹣1)2﹣4,∴其顶点坐标为(1,﹣4).故答案为(1,﹣4).15、2-2【解析】作DC关于AB的对称点D′C′,以BC中的O为圆心作半圆O,连D′O分别交AB及半圆O于P、G.将PD+PG转化为D′G找到最小值.【详解】如图:取点D关于直线AB的对称点D′,以BC中点O为圆心,OB为半径画半圆,连接OD′交AB于点P,交半圆O于点G,连BG,连CG并延长交AB于点E,由以上作图可知,BG⊥EC于G,PD+PG=PD′+PG=D′G,由两点之间线段最短可知,此时PD+PG最小,∵D′C’=4,OC′=6,∴D′O=,∴D′G=-2,∴PD+PG的最小值为-2,故答案为-2.【点睛】本题考查了轴对称的性质、直径所对的圆周角是直角、线段和的最小值问题等,综合性较强,能灵活利用相关知识正确添加辅助线是解题的关键.通常解此类问题都是将线段之和转化为固定两点之间的线段和最短.16、6【解析】仔细观察题目,先对待求式提取公因式化简得ab(a+b),将a=3+2,b=3-2,代入运算即可.【详解】解:待求式提取公因式,得将已知代入,得故答案为6.【点睛】考查代数式求值,熟练掌握提取公因式法是解题的关键.17、3【解析】连接OB,∵六边形ABCDEF是⊙O内接正六边形,∴∠BOM==30°,∴OM=OB•cos∠BOM=6×=3,故答案为3.18、100゜【分析】根据圆周角定理,由∠ACB=130°,得到它所对的圆心角∠α=2∠ACB=260°,用360°-260°即可得到圆心角∠AOB.【详解】如图,∵∠α=2∠ACB,而∠ACB=130°,∴∠α=260°,∴∠AOB=360°-260°=100°.故答案为100°.三、解答题(共66分)19、(1)b=2或b=;(2)x1=x2=2;【分析】(1)根据根的判别式即可求出答案.(2)由(1)可知b=2,根据一元二次方程的解法即可求出答案.【详解】解:(1)由题意可知:△=(b+2)2-4(6-b)=0,∴解得:b=2或b=.(2)当b=2时,此时x2-4x+4=0,∴,∴x1=x2=2;【点睛】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的解法,本题属于基础题型.20、(1)见解析;(1)见解析【分析】(1)利用关于原点对称的点的坐标特征找出A1,B1,C1,然后描点即可;

(1)利用网格特点和旋转的性质画出A、C的对应点A1、C1即可.【详解】解:(1)如图,△A1B1C1为所作;(1)如图,△A1B1C1为所作.【点睛】本题考查了作图-根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.21、(1);(2).【分析】(1)一共有3种等可能的结果,恰为类的概率是(2)根据题意列出所有等可能的结果数,然后根据概率公式求解.【详解】(1)(2)甲乙ABCA(A,A)(A,B)(A,C)B(B,A)(B,B)(B,C)C(C,A)(C,B)(C,C)由表格可知,甲、乙两人投放的垃圾共有9种结果,每种结果出现的可能性相同,其中甲、乙投放的垃圾恰是不同类别的有6种,即(A,B),(A,C),(B,A),(B,C),(C,A),(C,B),∴(甲、乙投放的垃圾是不同类别).【点睛】本题考查了列表法或树状图以及概率的求法.22、(1)见解析;(2)【分析】(1)根据垂径定理、切线的性质求出AB⊥CD,AB⊥BF,即可证明;(2)根据圆周角定理求出∠COD,根据弧长公式计算即可.【详解】(1)证明:∵AB是⊙O的直径,DE=CE,∴AB⊥CD,∵BF是⊙O的切线,∴AB⊥BF,∴CD∥BF;(2)解:连接OD、OC,∵∠A=35°,∴∠BOD=2∠A=70°,∴∠COD=2∠BOD=140°,∴的长为:=.【点睛】本题考查的是切线的性质、垂径定理、弧长的计算,掌握切线的性质定理、垂径定理和弧长的计算公式是解题的关键.23、(1);(2)点运动到坐标为,面积最大.【分析】(1)用待定系数法即可求抛物线解析式.

(2)设点P横坐标为t,过点P作PF∥y轴交AB于点F,求直线AB解析式,即能用t表示点F坐标,进而表示PF的长.把△PAB分成△PAF与△PBF求面积和,即得到△PAB面积与t的函数关系,配方即得到t为何值时,△PAB面积最大,进而求得此时点P坐标.【详解】解:(1)抛物线过点,,解这个方程组,得,抛物线解析式为.(2)如图1,过点作轴于点,交于点.时,,.直线解析式为.点在线段上方抛物线上,设...=点运动到坐标为,面积最大.【点睛】本题考查了二次函数的图象与性质,利用二次函数求三角形面积的最大值,关键在于把原三角形分割成有一边平行于y轴的两个三角形面积之和.24、(1)详见解析;(2)详见解析;(3)AF=.【分析】(1)先根据角平分线得出∠CAD=∠CAB,进而判断出△ADC∽△ACB,即可得出结论;(2)先利用直角三角形的性质得出CE=AE,进而得出∠ACE=∠CAE,从而∠CAD=∠ACE,即可得出结论;(3)由(1)的结论求出AC,再求出CE=3,最后由(2)的结论得出△CFE∽△AFD,即可得出结论.【详解】解:(1)∵AC平分∠BAD,∴∠C

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论