2025届陕西省西安电子科技大附属中学数学九上期末学业水平测试模拟试题含解析_第1页
2025届陕西省西安电子科技大附属中学数学九上期末学业水平测试模拟试题含解析_第2页
2025届陕西省西安电子科技大附属中学数学九上期末学业水平测试模拟试题含解析_第3页
2025届陕西省西安电子科技大附属中学数学九上期末学业水平测试模拟试题含解析_第4页
2025届陕西省西安电子科技大附属中学数学九上期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届陕西省西安电子科技大附属中学数学九上期末学业水平测试模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.矩形、菱形、正方形都一定具有的性质是()A.邻边相等 B.四个角都是直角C.对角线相等 D.对角线互相平分2.如图,A为反比例函数y=的图象上一点,AB垂直x轴于B,若S△AOB=2,则k的值为()A.4 B.2 C.﹣2 D.13.在反比例函数y=图象的每一条曲线上,y都随x的增大而增大,则k的取值范围是()A.k>2 B.k>0 C.k≥2 D.k<24.如图,在Rt△ABO中,∠AOB=90°,AO=BO=2,以O为圆心,AO为半径作半圆,以A为圆心,AB为半径作弧BD,则图中阴影部分的面积为()A.3π B.π+1 C.π D.25.一组数据由五个正整数组成,中位数是3,且惟一众数是7,则这五个正整数的平均数是()A.4 B.5 C.6 D.86.在一个不透明的袋子里装有若干个白球和15个黄球,这些球除颜色不同外其余均相同,每次从袋子中摸出一个球记录下颜色后再放回,经过很多次重复试验,发现摸到黄球的频率稳定在0.75,则袋中白球有()A.5个 B.15个 C.20个 D.35个7.用配方法解方程x2+3=4x,配方后的方程变为()A.(x-2)2=7 B.(x+2)2=1C.(x-2)2=1 D.(x+2)2=28.如图,在△ABC中,D,E,F分别为BC,AB,AC上的点,且EF∥BC,FD∥AB,则下列各式正确的是()A. B. C. D.9.如图中几何体的主视图是()A. B. C. D.10.已知二次函数的图象(0≤x≤4)如图,关于该函数在所给自变量的取值范围内,下列说法正确的是()A.有最大值1.5,有最小值﹣2.5 B.有最大值2,有最小值1.5C.有最大值2,有最小值﹣2.5 D.有最大值2,无最小值二、填空题(每小题3分,共24分)11.如图是小孔成像原理的示意图,点与物体的距离为,与像的距离是,.若物体的高度为,则像的高度是_________.12.如图,A,B,C是⊙O上三点,∠AOC=∠B,则∠B=_______度.13.把两块同样大小的含角的三角板的直角重合并按图1方式放置,点是两块三角板的边与的交点,将三角板绕点按顺时针方向旋转到图2的位置,若,则点所走过的路程是_________.14.如图,四边形ABCD内接于⊙O,AB是⊙O的直径,过点C作⊙O的切线交AB的延长线于点P,若∠P=40°,则∠ADC=____°.15.计算:_______.16.如图,⊙O的半径为2,AB为⊙O的直径,P为AB延长线上一点,过点P作⊙O的切线,切点为C.若PC=2,则BC的长为______.17.已知抛物线与轴交于两点,若点的坐标为,抛物线的对称轴为直线,则点的坐标为__________.18.如图,把△ABC沿AB边平移到△A′B′C′的位置,它们的重叠部分(即图中的阴影部分)的面积是△ABC的面积的一半,若AB=2,则此三角形移动的距离AA′=_______.三、解答题(共66分)19.(10分)某农场拟建两间矩形饲养室,一面靠现有墙(墙足够长),中间用一道墙隔开,并在如图所示的三处各留1m宽的门,已知计划中的材料可建墙体(不包括门)总长为27m,则能建成的饲养室面积最大为多少?20.(6分)如图,一次函数y=kx+b与反比例函数y=的图象在第一象限交于A,B两点,B点的坐标为(3,2),连接OA,OB,过B作BD⊥y轴,垂足为D,交OA于C,若OC=CA.(1)求一次函数和反比例函数的表达式;(2)求△AOB的面积.21.(6分)如图所示,阳光透过长方形玻璃投射到地面上,地面上出现一个明亮的平行四边形,杨阳用量角器量出了一条对角线与一边垂直,用直尺量出平行四边形的一组邻边的长分别是30cm,50cm,请你帮助杨阳计算出该平行四边形的面积.22.(8分)已知,在△ABC中,∠BAC=90°,∠ABC=45°,点D为直线BC上一动点(点D不与点B、C重合),以AD为边做正方形ADEF,连接CF.(1)如图①,当点D在线段BC上时,直接写出线段CF、BC、CD之间的数量关系.(2)如图②,当点D在线段BC的延长线上时,其他件不变,则(1)中的三条线段之间的数量关系还成立吗?如成立,请予以证明,如不成立,请说明理由;(3)如图③,当点D在线段BC的反向延长线上时,且点A、F分别在直线BC两侧,其他条件不变;若正方形ADEF的边长为4,对角线AE、DF相交于点O,连接OC,请直接写出OC的长度.23.(8分)如图,反比例函数y=(k≠0,x>0)的图象与矩形OABC的边AB、BC分别交于点E、F,E(,6),且E为BC的中点,D为x轴负半轴上的点.(1)求反比倒函数的表达式和点F的坐标;(2)若D(﹣,0),连接DE、DF、EF,则△DEF的面积是.24.(8分)在矩形ABCD中,O是对角线AC的中点,EF是线段AC的中垂线,交AD、BC于E、F.求证:四边形AECF是菱形.25.(10分)某文具店购进一批纪念册,每本进价为20元,在销售过程中发现该纪念册每周的销售量y(本)与每本纪念册的售价x(元)之间具有某种函数关系,其对应规律如下表所示售价x(元/本)…222324252627…销售量y(件)…363432302826…(1)请直接写出y与x的函数关系式:.(2)设该文店每周销售这种纪念册所获得的利润为W元,写出W与x之间的函数关系式,并求出该纪念册的销售单价定为多少元时,才能使文具店销售该纪念册每周所获利润最大?最大利润是多少?26.(10分)抛物线的顶点为,且过点,求它的函数解析式.

参考答案一、选择题(每小题3分,共30分)1、D【解析】矩形、菱形、正方形都是平行四边形,所以一定都具有的性质是平行四边形的性质,即对角线互相平分.故选D.2、A【分析】过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S是个定值,即S=|k|.【详解】由于点A是反比例函数图象上一点,则S△AOB=|k|=2;

又由于函数图象位于一、三象限,则k=4.

故选A.【点睛】本题考查反比例函数系数k的几何意义,解题的关键是掌握反比例函数系数k的几何意义.3、D【分析】根据反比例函数的性质,可求k的取值范围.【详解】∵反比例函数y=图象的每一条曲线上,y都随x的增大而增大,∴k﹣2<0,∴k<2故选:D.【点睛】考核知识点:反比例函数.理解反比例函数性质是关键.4、C【分析】根据题意和图形可以求得的长,然后根据图形,可知阴影部分的面积是半圆的面积减去扇形的面积,从而可以解答本题.【详解】解:在中,,,,图中阴影部分的面积为:,故选:C.【点睛】本题考查扇形面积的计算,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.5、A【分析】根据题意,五个正整数中3是中位数,唯一众数是7,可以得知比3大的有2个数,比3小的有2个数,且7有2个,然后求出这五个数的平均数即可.【详解】由五个正整数知,中位数是3说明比3大的有2个数,比3小的有2个数,唯一众数是7,则7有2个,所以这五个正整数分别是1、2、3、7、7,计算平均数是(1+2+3+7+7)÷5=4,故选:A.【点睛】本题考查了数据的收集与处理,中位数,众数,平均数的概念以及应用,掌握数据的收集与处理是解题的关键.6、A【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详解】解:设袋中白球有x个,根据题意得:=0.75,解得:x=5,经检验:x=5是分式方程的解,故袋中白球有5个.故选A.【点睛】此题考查了利用概率的求法估计总体个数,利用如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=是解题关键.7、C【分析】将方程常数项移到右边,未知项移到左边,然后两边都加上4,左边化为完全平方式,右边合并即可得到结果.【详解】x2+3=4x,整理得:x2-4x=-3,配方得:x2-4x+4=4-3,即(x-2)2=1.故选C.【点睛】此题考查了解一元二次方程-配方法,利用此方法解方程时,首先将方程常数项移到右边,未知项移到左边,二次项系数化为1,然后方程两边都加上一次项系数一半的平方,左边化为完全平方式,开方即可求出解.8、D【分析】根据EF∥BC,FD∥AB,可证得四边形EBDF是平行四边形,利用平行线分线段成比例逐一验证选项即可.【详解】解:∵EF∥BC,FD∥AB,∴四边形EBDF是平行四边形,∴BE=DF,EF=BD,∵EF∥BC,∴,,∴,故B错误,D正确;∵DF∥AB,∴,,∴,故A错误;∵,,故C错误;故选:D.【点睛】本题考查了平行四边形的的判定,平行线分线段成比例的定理,掌握平行线分线段成比例定理是解题的关键.9、D【解析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【详解】解:从正面看应得到第一层有3个正方形,第二层从左面数第1个正方形上面有1个正方形,故选D.【点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.10、C【详解】由图像可知,当x=1时,y有最大值2;当x=4时,y有最小值-2.5.故选C.二、填空题(每小题3分,共24分)11、7【分析】根据三角形相似对应线段成比例即可得出答案.【详解】作OE⊥AB与点E,OF⊥CD于点F根据题意可得:△ABO∽△DCO,OE=30cm,OF=14cm∴即解得:CD=7cm故答案为7.【点睛】本题考查的是相似三角形的性质,注意两三角形相似不仅对应边成比例,对应中线和对应高线也成比例,周长同样成比例,均等于相似比.12、1【分析】连结OB,可知△OAB和△OBC都是等腰三角形,∠ABC=∠A+∠C=∠AOC,四边形内角和360゜,可求∠B.【详解】如图,连结OB,∵OA=OB=OC,∴△OAB和△OBC都是等腰三角形,∴∠A=∠OBA,∠C=∠OBC,∴∠ABC=∠OBA+∠OBC=∠A+∠C,∴∠A+∠C=∠ABC=∠AOC∵∠A+∠ABC+∠C+∠AOC=360゜∴3∠ABC=360゜∴∠ABC=1゜即∠B=1゜.故答案为:1.【点睛】本题考查圆周角度数问题,要抓住半径相等构造两个等腰三角形,把问题转化为解∠B的方程是关键.13、【分析】两块三角板的边与的交点所走过的路程,需分类讨论,由图①的点运动到图②的点,由图②的点运动到图③的点,总路程为,分别求解即可.【详解】如图,两块三角板的边与的交点所走过的路程,分两步走:(1)由图①的点运动到图②的点,此时:AC⊥DE,点C到直线DE的距离最短,所以CF最短,则PF最长,根据题意,,,在中,∴;(2)由图②的点运动到图③的点,过G作GH⊥DC于H,如下图,∵,且GH⊥DC,∴是等腰直角三角形,∴,设,则,∴,∴,解得:,即,点所走过的路程:,故答案为:【点睛】本题是一道需要把旋转角的概念和解直角三角形相结合求解的综合题,考查学生综合运用数学知识的能力.正确确定点所走过的路程是解答本题的关键.14、115°【分析】根据过C点的切线与AB的延长线交于P点,∠P=40°,可以求得∠OCP和∠OBC的度数,又根据圆内接四边形对角互补,可以求得∠D的度数,本题得以解决.【详解】解:连接OC,如右图所示,

由题意可得,∠OCP=90°,∠P=40°,

∴∠COB=50°,

∵OC=OB,

∴∠OCB=∠OBC=65°,

∵四边形ABCD是圆内接四边形,

∴∠D+∠ABC=180°,

∴∠D=115°,

故答案为:115°.【点睛】本题考查切线的性质、圆内接四边形,解题的关键是明确题意,找出所求问题需要的条件.15、【分析】原式把变形为,然后逆运用积的乘方进行运算即可得到答案.【详解】解:=====.故答案为:.【点睛】此题主要考查了幂的运算,熟练掌握积的乘方运算法则是解答此题的关键.16、2【分析】连接OC,根据勾股定理计算OP=4,由直角三角形30度的逆定理可得∠OPC=30°,则∠COP=60°,可得△OCB是等边三角形,从而得结论.【详解】连接OC,∵PC是⊙O的切线,∴OC⊥PC,∴∠OCP=90°,∵PC=2,OC=2,∴OP===4,∴∠OPC=30°,∴∠COP=60°,∵OC=OB=2,∴△OCB是等边三角形,∴BC=OB=2,故答案为2【点睛】本题考查切线的性质、等腰三角形的性质、等边三角形的判定等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.17、【解析】根据抛物线对称轴是直线及两点关于对称轴直线对称求出点B的坐标即可.【详解】解:∵抛物线与轴交于两点,且点的坐标为,抛物线的对称轴为直线∴点B的横坐标为即点B的坐标为【点睛】本题考查抛物线的对称性,利用数形结合思想确定关于直线对称的点的坐标是本题的解题关键.18、【分析】由题意易得阴影部分与△ABC相似,然后根据相似三角形的面积比是相似比的平方可求解.【详解】解:把△ABC沿AB边平移到△A′B′C′的位置,,它们的重叠部分(即图中的阴影部分)的面积是△ABC的面积的一半,AB=2,即,;故答案为.【点睛】本题主要考查相似三角形的性质,熟练掌握相似三角形的性质是解题的关键.三、解答题(共66分)19、饲养室的最大面积为75平方米【分析】设垂直于墙的材料长为x米,则平行于墙的材料长为27+3-3x=30-3x,表示出总面积S=x(30-3x)=-3x2+30x=-3(x-5)2+75即可求得面积的最值【详解】设垂直于墙的材料长为x米,则平行于墙的材料长为27+3﹣3x=30﹣3x,则总面积S=x(30﹣3x)=﹣3x2+30x=﹣3(x﹣5)2+75,故饲养室的最大面积为75平方米【点睛】本题考查了二次函数的应用,解题的关键是从实际问题中抽象出函数模型.20、(1)y=;y=-x+6(2)【解析】(1)先利用待定系数法求出反比例函数解析式,进而确定出点A的坐标,再用待定系数法求出一次函数解析式;(2)先求出OB的解析式,进而求出AG,用三角形的面积公式即可得出结论.【详解】解:(1)如图,过点A作AF⊥x轴交BD于E,∵点B(3,2)在反比例函数的图象上,∴a=3×2=6,∴反比例函数的表达式为,∵B(3,2),∴EF=2,∵BD⊥y轴,OC=CA,∴AE=EF=AF,∴AF=4,∴点A的纵坐标为4,∵点A在反比例函数图象上,∴A(,4),∴,∴,∴一次函数的表达式为;(2)如图1,过点A作AF⊥x轴于F交OB于G,∵B(3,2),∴直线OB的解析式为y=,∴G(,1),∵A(,4),∴AG=4﹣1=3,∴S△AOB=S△AOG+S△ABG=×3×3=.【点睛】此题主要考查了待定系数法,三角形的面积公式,三角形的中位线,解本题的关键是用待定系数法求出直线AB的解析式.21、1200cm2【解析】先利用勾股定理计算AC,然后根据平行四边形的面积求解.【详解】解如图,AB=30cm,BC=50cm,AB⊥AC,在Rt△ABC中,AC==40cm,所以该平行四边形的面积=30×40=1200(cm2).【点睛】本题主要考查了利用勾股定理求直角三角形边长和求平行四边形面积,熟练掌握方法即可求解.22、(1)CF+CD=BC;(2)CF+CD=BC不成立,存在CF﹣CD=BC,证明详见解析;(3).【分析】(1)△ABC是等腰直角三角形,利用SAS即可证明△BAD≌△CAF,从而证得CF=BD,据此即可证得;(2)同(1)相同,利用SAS即可证得△BAD≌△CAF,从而证得BD=CF,即可得到CF﹣CD=BC;(3)先证明△BAD≌△CAF,进而得出△FCD是直角三角形,然后根据正方形的性质即可求得DF的长,再根据直角三角形斜边上中线的性质即可得到OC的长.【详解】(1)∵∠BAC=90°,∠ABC=45°,∴∠ACB=∠ABC=45°,∴AB=AC,∵四边形ADEF是正方形,∴AD=AF,∠DAF=90°,∵∠BAD=90°﹣∠DAC,∠CAF=90°﹣∠DAC,∴∠BAD=∠CAF,∵在△BAD和△CAF中,,∴△BAD≌△CAF(SAS),∴BD=CF,∵BD+CD=BC,∴CF+CD=BC;故答案为:CF+CD=BC;(2)CF+CD=BC不成立,存在CF﹣CD=BC;理由:∵∠BAC=90°,∠ABC=45°,∴∠ACB=∠ABC=45°,∴AB=AC,∵四边形ADEF是正方形,∴AD=AF,∠DAF=90°,∵∠BAD=90°﹣∠DAC,∠CAF=90°﹣∠DAC,∴∠BAD=∠CAF,∵在△BAD和△CAF中,,∴△BAD≌△CAF(SAS)∴BD=CF∴BC+CD=CF,∴CF﹣CD=BC;(3)∵∠BAC=90°,∠ABC=45°,∴∠ACB=∠ABC=45°,∴AB=AC,∵四边形ADEF是正方形,∴AD=AF,∠DAF=90°,∵∠BAD=90°﹣∠BAF,∠CAF=90°﹣∠BAF,∴∠BAD=∠CAF,∵在△BAD和△CAF中,,∴△BAD≌△CAF(SAS),∴∠ACF=∠ABD,∵∠ABC=45°,∴∠ABD=135°,∴∠ACF=∠ABD=135°,∴∠FCD=135°﹣45°=90°,∴△FCD是直角三角形.∵正方形ADEF的边长4且对角线AE、DF相交于点O.∴DF=AD=4,O为DF中点.∴Rt△CDF中,OC=DF=×=.【点睛】此题是四边形综合题,主要考查了等腰直角三角形的性质,正方形与全等三角形的判定与性质的综合应用,判断出△BAD≌△CAF是解本题的关键.23、(1)y=,F(3,3);(2)S△DEF=1.【分析】(1)利用待定系数法即可求得反比例函数的解析式,根据题意求得B的坐标,进而得到F的横坐标,代入解析式即可求得纵坐标;(2)设DE交y轴于H,先证得H是OC的中点,然后根据S△DEF=S矩形OABC+S△ODH﹣S△ADF﹣S△CEH﹣S△BEF即可求得.【详解】(1)∵反比例函数y=(k≠0,x>0)的图象过E(,6),∴k=×6=1,∴反比例函数的解析式为y=,∵E为BC的中点,∴B(3,6),∴F的横坐标为3,把x=3代入y=得,y==3,∴F(3,3);(2)设DE交y轴于H,∵BC∥x轴,∴△DOH∽△ECH,∴==1,∴OH=CH=3,∴S△DEF=S矩形OABC+S△ODH﹣S△ADF﹣S△CEH﹣S△BEF=3×6+××3﹣×(3+)×3﹣﹣=1.【点睛】此题主要考查反比例函数与相似三角形,解题的关键是熟知反比例函数的图像与性质及相似三角形的判定与性质.24、见解析【解析】试题分析:首先根据题意画出图形,再证明≌进而得到再根据垂直平分线的性质证明可得四边形是菱形.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论