吉林省松原市宁江四中学2025届九上数学期末学业水平测试试题含解析_第1页
吉林省松原市宁江四中学2025届九上数学期末学业水平测试试题含解析_第2页
吉林省松原市宁江四中学2025届九上数学期末学业水平测试试题含解析_第3页
吉林省松原市宁江四中学2025届九上数学期末学业水平测试试题含解析_第4页
吉林省松原市宁江四中学2025届九上数学期末学业水平测试试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

吉林省松原市宁江四中学2025届九上数学期末学业水平测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.下列事件中,是必然事件的是()A.从装有10个黑球的不透明袋子中摸出一个球,恰好是红球B.抛掷一枚普通正方体骰子,所得点数小于7C.抛掷一枚一元硬币,正面朝上D.从一副没有大小王的扑克牌中抽出一张,恰好是方块2.的值等于()A. B. C. D.3.如图,已知AB、AC都是⊙O的弦,OM⊥AB,ON⊥AC,垂足分别为M,N,若MN=,那么BC等于()A.5 B. C.2 D.4.如图,点A是双曲线在第二象限分支上的一个动点,连接AO并延长交另一分支于点B,以AB为底作等腰△ABC,且∠ACB=120°,点C在第一象限,随着点A的运动,点C的位置也不断变化,但点C始终在双曲线上运动,则k的值为()A.1 B.2 C.3 D.45.如图,向量与均为单位向量,且OA⊥OB,令=+,则=()A.1 B. C. D.26.如图所示几何体的左视图是()A. B. C. D.7.下列事件中,是必然事件的是()A.打开电视,它正在播广告B.抛掷一枚硬币,正面朝上C.打雷后会下雨D.367人中有至少两人的生日相同8.下列四个图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.9.如图,已知.按照以下步骤作图:①以点为圆心,以适当的长为半径作弧,分别交的两边于,两点,连接.②分别以点,为圆心,以大于线段的长为半径作弧,两弧在内交于点,连接,.③连接交于点.下列结论中错误的是()A. B.C. D.10.已知点关于轴的对称点在反比例函数的图像上,则实数的值为()A.-3 B. C. D.311.已知一元二次方程的一般式为,则一元二次方程x2-5=0中b的值为()A.1 B.0 C.-5 D.512.如图,⊙A、⊙B、⊙C、⊙D、⊙E相互外离,它们的半径都是1,顺次连接五个圆心得到五边形ABCDE,则图中五个扇形(阴影部分)的面积之和是()A. B.1.5 C.2 D.2.5二、填空题(每题4分,共24分)13.若,且,则的值是__________.14.如图,AB为⊙O的直径,点D是弧AC的中点,弦BD,AC交于点E,若DE=2,BE=4,则tan∠ABD=_____.15.如图,一组平行横格线,其相邻横格线间的距离都相等,已知点A、B、C、D、O都在横格线上,且线段AD,BC交于点O,则AB:CD等于______.16.如图,一张桌子上重叠摆放了若干枚一元硬币,从三个不同方向看它得到的平面图形如图所示,那么桌上共有_______枚硬币.17.某校开展“节约每一滴水”活动,为了了解开展活动一个月以来节约用水的情况,从八年级的400名同学中选取20名同学统计了各自家庭一个月节约用水情况.如表:节水量/m30.20.250.30.40.5家庭数/个24671请你估计这400名同学的家庭一个月节约用水的总量大约是_____m3.18.如图,矩形ABCD中,AD=2,AB=5,P为CD边上的动点,当△ADP与△BCP相似时,DP=__.三、解答题(共78分)19.(8分)如图,⊙O的直径AB为10cm,弦BC为5cm,D、E分别是∠ACB的平分线与⊙O,AB的交点,P为AB延长线上一点,且PC=PE.(1)求AC、AD的长;(2)试判断直线PC与⊙O的位置关系,并说明理由.20.(8分)如图,一次函数y=kx+b(k,b为常数,k≠0)的图象与反比例函数的图象交于A、B两点,且与x轴交于点C,与y轴交于点D,A点的横坐标与B点的纵坐标都是3.(1)求一次函数的表达式;(2)求△AOB的面积;(3)写出不等式kx+b>﹣的解集.21.(8分)A、B、C三人玩篮球传球游戏,游戏规则是:第一次传球由A将球随机地传给B、C两人中的某一人,以后的每一次传球都是由上次的传球者随机地传给其他两人中的某一人.(1)求两次传球后,球恰在B手中的概率;(2)求三次传球后,球恰在A手中的概率.22.(10分)如图1是小区常见的漫步机,从侧面看如图2,踏板静止时,踏板连杆与立柱上的线段重合,长为0.2米,当踏板连杆绕着点旋转到处时,测得,此时点距离地面的高度为0.44米.求:(1)踏板连杆的长.(2)此时点到立柱的距离.(参考数据:,,)23.(10分)已知关于x的方程.求证:不论m为何值,方程总有实数根;当m为何整数时,方程有两个不相等的正整数根?24.(10分)如图,一块等腰三角形钢板的底边长为,腰长为.(1)求能从这块钢板上截得的最大圆的半径;(2)用一个圆完整覆盖这块钢板,这个圆的最小半径是多少?25.(12分)如图,在中,,.用直尺和圆规作,使圆心O在BC边,且经过A,B两点上不写作法,保留作图痕迹;连接AO,求证:AO平分.26.如图,AB为⊙O的直径,AC是弦,D为线段AB延长线上一点,过C,D作射线DP,若∠D=2∠CAD=45º.(1)证明:DP是⊙O的切线.(2)若CD=3,求BD的长.

参考答案一、选择题(每题4分,共48分)1、B【解析】根据事件发生的可能性大小即可判断.【详解】A.从装有10个黑球的不透明袋子中摸出一个球,恰好是红球的概率为0,故错误;B.抛掷一枚普通正方体骰子,所得点数小于7的概率为1,故为必然事件,正确;C.抛掷一枚一元硬币,正面朝上的概率为50%,为随机事件,故错误;D.从一副没有大小王的扑克牌中抽出一张,恰好是方块,为随机事件,故错误;故选B.【点睛】此题主要考查事件发生的可能性,解题的关键是熟知概率的定义.2、B【解析】根据特殊角的三角函数值求解.【详解】.

故选:B.【点睛】本题考查了特殊角的三角函数值,解答本题的关键是熟记几个特殊角的三角函数值.3、C【解析】先根据垂径定理得出M、N分别是AB与AC的中点,故MN是△ABC的中位线,由三角形的中位线定理即可得出结论.【详解】解:∵OM⊥AB,ON⊥AC,垂足分别为M、N,∴M、N分别是AB与AC的中点,∴MN是△ABC的中位线,∴BC=2MN=2,故选:C.【点睛】本题考查垂径定理、三角形中位线定理;熟知平分弦的直径平分这条弦,并且平分弦所对的两条弧是解答此题的关键.4、B【解析】试题分析:连接CO,过点A作AD⊥x轴于点D,过点C作CE⊥x轴于点E,∵连接AO并延长交另一分支于点B,以AB为底作等腰△ABC,且∠ACB=220°,∴CO⊥AB,∠CAB=30°,则∠AOD+∠COE=90°,∵∠DAO+∠AOD=90°,∴∠DAO=∠COE,又∵∠ADO=∠CEO=90°,∴△AOD∽△OCE,∴=tan60°=,则=3,∵点A是双曲线在第二象限分支上的一个动点,∴=AD•DO=×6=3,∴k=EC×EO=2,则EC×EO=2.故选B.考点:2.反比例函数图象上点的坐标特征;2.综合题.5、B【解析】根据向量的运算法则可得:=,故选B.6、B【分析】根据从左面看得到的图形是左视图,可得答案.【详解】解:如图所示,几何体的左视图是:.故选:B.【点睛】本题考查了简单组合体的三视图,从左面看得到的图形是左视图.7、D【解析】分析:必然事件指在一定条件下一定发生的事件,据此解答即可.详解:A.打开电视,它正在播广告是随机事件;B.抛掷一枚硬币,正面朝上是随机事件;C.打雷后下雨是随机事件;D.∵一年有365天,∴367人中有至少两个人的生日相同是必然事件.故选D.点睛:本题考查了必然事件的定义,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.8、A【解析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、是轴对称图形,是中心对称图形,故此选项正确;

B、是轴对称图形,不是中心对称图形,故此选项错误;

C、不是轴对称图形,不是中心对称图形,故此选项错误;

D、不是轴对称图形,是中心对称图形,故此选项错误;

故选:A.【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.9、C【分析】利用基本作图得出是角平分线的作图,进而解答即可.【详解】由作图步骤可得:是的角平分线,∴∠COE=∠DOE,∵OC=OD,OE=OE,OM=OM,∴△COE≌△DOE,∴∠CEO=∠DEO,∵∠COE=∠DOE,OC=OD,∴CM=DM,OM⊥CD,∴S四边形OCED=S△COE+S△DOE=,但不能得出,∴A、B、D选项正确,不符合题意,C选项错误,符合题意,故选C.【点睛】本题考查了作图﹣基本作图,全等三角形的判定与性质,等腰三角形的性质,三角形的面积等,熟练掌握5种基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线)是解题的关键.10、A【分析】先根据关于x轴对称的点的坐标特征确定A'的坐标为,然后把A′的坐标代入中即可得到k的值.【详解】解:点关于x轴的对称点A'的坐标为,

把A′代入,得k=-1×1=-1.

故选:A.【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.11、B【分析】对照一元二次方程的一般形式,根据没有项的系数为0求解即可.【详解】∵一元二次方程的一般式为,对于一元二次方程x2-5=0中没有一次项,故b的值为0,故选:B.【点睛】此题主要考查对一元二次方程的一般形式的认识,掌握住各项系数是解题的关键.12、B【分析】本题考查的是扇形面积,圆心角之和等于五边形的内角和,由于半径相同,那么根据扇形的面积公式计算即可.【详解】图中五个扇形(阴影部分)的面积是,故选B.二、填空题(每题4分,共24分)13、-2【分析】根据比例的性质得到3b=4a,结合a+b=14求得a、b的值,代入求值即可.【详解】解:由a:b=3:4知3b=4a,所以b=,所以由a+b=14得到:,解得a=1.

所以b=8,所以a-b=1-8=-2.

故答案为:-2.【点睛】考查了比例的性质,内项之积等于外项之积.若,则ad=bc.14、【分析】根据圆周角定理得到∠DAC=∠B,得到△ADE∽△BDA,根据相似三角形的性质求出AD,根据正切的定义解答即可.【详解】∵点D是弧AC的中点,∴,∴∠DAC=∠ABD,又∵∠ADE=∠BDA,∴△ADE∽△BDA,∴,即,解得:AD=2,∵AB为⊙O的直径,∴∠ADB=90°,∴tan∠ABD=tan∠DAE.故答案为:.【点睛】本题考查了相似三角形的判定和性质、圆周角定理、正切的定义,掌握相似三角形的判定定理和性质定理是解答本题的关键.15、2:1.【解析】过点O作OE⊥AB于点E,延长EO交CD于点F,可得OF⊥CD,由AB//CD,可得△AOB∽△DOC,根据相似三角形对应高的比等于相似比可得,由此即可求得答案.【详解】如图,过点O作OE⊥AB于点E,延长EO交CD于点F,∵AB//CD,∴∠OFD=∠OEA=90°,即OF⊥CD,∵AB//CD,∴△AOB∽△DOC,又∵OE⊥AB,OF⊥CD,练习本中的横格线都平行,且相邻两条横格线间的距离都相等,∴=,故答案为:2:1.【点睛】本题考查了相似三角形的的判定与性质,熟练掌握相似三角形对应高的比等于相似比是解本题的关键.16、1【分析】从俯视图中可以看出最底层硬币的个数及形状,从主视图可以看出每一层硬币的层数和个数,从左视图可看出每一行硬币的层数和个数,从而算出总的个数.【详解】解:三堆硬币的个数相加得:3+4+2=1.

∴桌上共有1枚硬币.

故答案为:1.【点睛】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.17、130【解析】先计算这20名同学各自家庭一个月的节水量的平均数,即样本平均数,然后乘以总数400即可解答.【详解】20名同学各自家庭一个月平均节约用水是:(0.2×2+0.25×4+0.3×6+0.4×7+0.5×1)÷20=0.325(m3),因此这400名同学的家庭一个月节约用水的总量大约是:400×0.325=130(m3),故答案为130.【点睛】本题考查的是通过样本去估计总体,只需将样本“成比例地放大”为总体即可,关键是求出样本的平均数.18、1或4或2.1.【分析】需要分类讨论:△APD∽△PBC和△PAD∽△PBC,根据该相似三角形的对应边成比例求得DP的长度.【详解】设DP=x,则CP=1-x,本题需要分两种情况情况进行讨论,①、当△PAD∽△PBC时,=∴,解得:x=2.1;②、当△APD∽△PBC时,=,即=,解得:x=1或x=4,综上所述DP=1或4或2.1【点晴】本题主要考查的就是三角形相似的问题和动点问题,首先将各线段用含x的代数式进行表示,然后看是否有相同的角,根据对应角的两边对应成比例将线段写成比例式的形式,然后分别进行计算得出答案.在解答这种问题的时候千万不能出现漏解的现象,每种情况都要考虑到位.三、解答题(共78分)19、(1)AC=5,AD=5;(2)直线PC与⊙O相切【分析】(1)、连接BD,根据AB为直径,则∠ACB=∠ADB=90°,根据Rt△ABC的勾股定理求出AC的长度,根据CD平分∠ACB得出Rt△ABD是等腰直角三角形,从而得出AD的长度;(2)、连接OC,根据OA=OC得出∠CAO=∠OCA,根据PC=PE得出∠PCE=∠PEC,然后结合CD平分∠ACB得出∠ACE=∠ECB,从而得出∠PCB=∠ACO,根据∠ACB=90°得出∠OCP=90°,从而说明切线.【详解】解:(1)、①如图,连接BD,∵AB是直径∴∠ACB=∠ADB=90°,在RT△ABC中,AC=②∵CD平分∠ACB,∴AD=BD,∴Rt△ABD是直角等腰三角形∴AD=AB=×10=5cm;(2)、直线PC与⊙O相切,理由:连接OC,∵OC=OA∴∠CAO=∠OCA∵PC=PE∴∠PCE=∠PEC,∵∠PEC=∠CAE+∠ACE∵CD平分∠ACB∴∠ACE=∠ECB∴∠PCB=∠ACO∵∠ACB=90°,∴∠OCP=∠OCB+∠PCB=∠ACO+∠OCB=∠ACB=90°,OC⊥PC,∴直线PC与⊙O相切.考点:(1)、勾股定理;(2)、直线与圆的位置关系.20、(1)y=﹣x﹣1;(2)△AOB的面积为;(3)x<﹣4或0<x<3.【解析】(1)先根据A点的横坐标与B点的纵坐标都是3,求出A,B,再把A,B的值代入解析式即可解答(2)先求出C的坐标,利用三角形的面积公式即可解答(3)一次函数大于反比例函数即一次函数的图象在反比例函数的图象的上边时,对应的x的取值范围;【详解】(1)∵一次函数y=kx+b(k,b为常数,k≠0)的图象与反比例函数的图象交于A、B两点,且与x轴交于点C,与y轴交于点D,A点的横坐标与B点的纵坐标都是3,∴,解得:x=﹣4,y=﹣=﹣4,故B(﹣4,3),A(3,﹣4),把A,B点代入y=kx+b得:,解得:,故直线解析式为:y=﹣x﹣1;(2)y=﹣x﹣1,当y=0时,x=﹣1,故C点坐标为:(﹣1,0),则△AOB的面积为:×1×3+×1×4=;(3)不等式kx+b>﹣的解集为:x<﹣4或0<x<3.【点睛】此题考查反比例函数与一次函数的交点问题,解题关键在于把已知点代入解析式21、(1);(2).【解析】试题分析:(1)直接列举出两次传球的所有结果,球球恰在B手中的结果只有一种即可求概率;(2)画出树状图,表示出三次传球的所有结果,三次传球后,球恰在A手中的结果有2种,即可求出三次传球后,球恰在A手中的概率.试题解析:解:(1)两次传球的所有结果有4种,分别是A→B→C,A→B→A,A→C→B,A→C→A.每种结果发生的可能性相等,球球恰在B手中的结果只有一种,所以两次传球后,球恰在B手中的概率是;(2)树状图如下,由树状图可知,三次传球的所有结果有8种,每种结果发生的可能性相等.其中,三次传球后,球恰在A手中的结果有A→B→C→A,A→C→B→A这两种,所以三次传球后,球恰在A手中的概率是.考点:用列举法求概率.22、(1)1.2米(2)0.72米【解析】(1)过点C作CG⊥AB于G,得到四边形CFEG是矩形,根据矩形的性质得到EG=CF=0.44,故BG=0.24设AG=x,求得AB=x+0.24,AC=AB=x+0.24,根据余弦的定义列方程即可求出x,即可求出AB的长;(2)利用正弦即可求出CG的长.【详解】(1)过点C作CG⊥AB于G,则四边形CFEG是矩形,∴EG=CF=0.44,故BG=0.24设AG=x,∴AB=x+0.24,AC=AB=x+0.24,在Rt△ACG中,∠AGC=90°,∠CAG=37°,cos∠CAG==0.8,解得:x=0.96,经检验,x=0.96符合题意,∴AB=x+0.24=1.2(米),(2)点到立柱的距离为CG,故CG=ACsin37°=1.2×0.6=0.72(米)【点睛】此题主要考查了解直角三角形的应用,熟练应用锐角三角函数关系是解题关键.23、(1)见解析;(2).【解析】计算根的判别式,证明;因式分解求出原方程的两个根,根据m为整数、两个不相等的正整数根得到m的值.【详解】,,,,即,不论m为何值,方程总有实数根.,,,方程有两个不相等的正整数根,.【点睛】本题考查了一元二次方程根的判别式、一元二次方程的解法解决的关键是用因式分解法求出方程的两个根.24、(1)cm;(2)40cm.【分析】(1)由于三角形ABC是等腰三角形,过A作AD⊥BC于D,那么根据勾股定理得到AD=30,又从这块钢板上截得的最大圆就是三角形的内切圆,根据内切圆的圆心的性质知道其圆心在AD上,分别连接AO、BO、CO,然后利用三角形的面积公式即可求解;(2)由于一个圆完整覆盖这块钢板,那么这个圆是三个三角形的外接圆,设覆盖圆的半径为R,根据垂径定理和勾股定理即可求解【详解】解:(1)如图,过A作AD⊥BC于D∵AB=AC=50,BC=80∴根据等腰三角形三线合一的性质及勾股定理可得AD=30,BD=CD=40,设最大圆半径为r,则S△ABC

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论