2024年北京市中考数学真题试卷及答案_第1页
2024年北京市中考数学真题试卷及答案_第2页
2024年北京市中考数学真题试卷及答案_第3页
2024年北京市中考数学真题试卷及答案_第4页
2024年北京市中考数学真题试卷及答案_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024年北京市中考数学真题试卷第一部分选择题一、选择题(共16分,每题2分)第1-8题均有四个选项,符合题意的选项只有一个1.下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.2.如图,直线和相交于点,,若,则的大小为()A. B. C. D.3.实数,在数轴上的对应点的位置如图所示,下列结论中正确的是()A. B. C. D.4.若关于的一元二次方程有两个相等的实数根,则实数的值为()A. B. C.4 D.165.不透明的袋子中装有一个红色小球和一个白色小球,除颜色外两个小球无其他差别.从中随机取出一个小球后,放回并摇匀,再从中随机取出一个小球,则两次都取到白色小球的概率为()A. B. C. D.6.为助力数字经济发展,北京积极推进多个公共算力中心的建设.北京数字经济算力中心日前已部署上架和调试的设备的算力为Flops(Flops是计算机系统算力的一种度量单位),整体投产后,累计实现的算力将是日前已部署上架和调试的设备的算力的5倍,达到Flops,则的值为()A. B. C. D.7.下面是“作一个角使其等于”的尺规作图方法.(1)如图,以点为圆心,任意长为半径画弧,分别交,于点,(2)作射线,以点为圆心,长为半径画弧,交于点;以点为圆心,长为半径画弧,两弧交于点(3)过点作射线,则.

上述方法通过判定得到,其中判定的依据是()A.三边分别相等的两个三角形全等B.两边及其夹角分别相等的两个三角形全等C.两角及其夹边分别相等的两个三角形全等D.两角分别相等且其中一组等角的对边相等的两个三角形全等8.如图,在菱形中,,为对角线的交点.将菱形绕点逆时针旋转得到菱形,两个菱形的公共点为,,,.对八边形给出下面四个结论:①该八边形各边长都相等②该八边形各内角都相等③点到该八边形各顶点的距离都相等④点到该八边形各边所在直线的距离都相等。上述结论中,所有正确结论的序号是()A.①③ B.①④ C.②③ D.②④第二部分非选择题二、填空题(共16分,每题2分)9.若在实数范围内有意义,则实数的取值范围是_________.10.分解因式:___________.11.方程的解为___________.12.在平面直角坐标系中,若函数的图象经过点和,则的值是___________.13.某厂加工了200个工件,质检员从中随机抽取10个工件检测了它们的质量(单位:g),得到的数据如下:50.0349.9850.0049.9950.0249.9950.0149.9750.0050.02当一个工件的质量(单位:g)满足时,评定该工件为一等品.根据以上数据,估计这200个工件中一等品的个数是___________.14.如图,的直径平分弦(不是直径).若,则___________15.如图,在正方形中,点在上,于点,于点.若,,则的面积为___________.16.联欢会有A,B,C,D四个节目需要彩排.所有演员到场后节目彩排开始。一个节目彩排完毕,下一个节目彩排立即开始.每个节目的演员人数和彩排时长(单位:min)如下:节目ABCD演员人数102101彩排时长30102010已知每位演员只参演一个节目.一位演员的候场时间是指从第一个彩排的节目彩排开始到这位演员参演的节目彩排开始的时间间隔(不考虑换场时间等其他因素)。若节目按“”的先后顺序彩排,则节目D的演员的候场时间为____________min若使这23位演员的候场时间之和最小,则节目应按___________的先后顺序彩排三、解答题(共68分,第17-19题每题5分,第20-21题每题6分,第22-23题每题5分,第24题6分,第25题5分,第26题6分,第27-28题每题7分)解答应写出文字说明、演算步骤或证明过程.17.计算:18.解不等式组:19.已知,求代数式的值.20.如图,在四边形中,是的中点,,交于点,,.(1)求证:四边形为平行四边形(2)若,,,求的长.21.为防治污染,保护和改善生态环境,自2023年7月1日起,我国全面实施汽车国六排放标准6b阶段(以下简称“标准”).对某型号汽车,“标准”要求类物质排放量不超过,,两类物质排放量之和不超过.已知该型号某汽车的,两类物质排放量之和原为.经过一次技术改进,该汽车的类物质排放量降低了,类物质排放量降低了,,两类物质排放量之和为,判断这次技术改进后该汽车的类物质排放量是否符合“标准”,并说明理由.22.在平面直角坐标系中,函数与的图象交于点.(1)求,的值(2)当时,对于的每一个值,函数的值既大于函数的值,也大于函数的值,直接写出的取值范围.23.某学校举办的“青春飞扬”主题演讲比赛分为初赛和决赛两个阶段.(1)初赛由名数师评委和名学生评委给每位选手打分(百分制)对评委给某位选手的打分进行整理、描述和分析.下面给出了部分信息..教师评委打分:.学生评委打分的频数分布直方图如下(数据分6组:第1组,第2组,第3组,第4组,第5组,第6组):.评委打分的平均数、中位数、众数如下:

平均数中位数众数教师评委学生评委根据以上信息,回答下列问题:①的值为___________,的值位于学生评委打分数据分组的第__________组②若去掉教师评委打分中的最高分和最低分,记其余8名教师评委打分的平均数为,则___________(填“”“”或“”)(2)决赛由5名专业评委给每位选手打分(百分制).对每位选手,计算5名专业评委给其打分的平均数和方差.平均数较大的选手排序靠前,若平均数相同,则方差较小的选手排序靠前,5名专业评委给进入决赛的甲、乙、丙三位选手的打分如下:

评委1评委2评委3评委4评委5甲乙丙若丙在甲、乙、丙三位选手中的排序居中,则这三位选手中排序最靠前的是____________,表中(为整数)的值为____________.24.如图,是的直径,点,在上,平分.

(1)求证:(2)延长交于点,连接交于点,过点作的切线交的延长线于点.若,,求半径的长.25.小云有一个圆柱形水杯(记为1号杯),在科技活动中,小云用所学数学知识和人工智能软件设计了一个新水杯,并将其制作出来,新水杯(记为2号杯)示意图如下当1号杯和2号杯中都有mL水时,小云分别记录了1号杯的水面高度(单位:cm)和2号杯的水面高度(单位:cm),部分数据如下:/mL040100200300400500/cm0

2.55.07.510.012.5/cm02.84.87.28.910.511.8(1)补全表格(结果保留小数点后一位)(2)通过分析数据,发现可以用函数刻画与,与之间的关系.在给出的平面直角坐标系中,画出这两个函数的图象(3)根据以上数据与函数图象,解决下列问题:①当1号杯和2号杯中都有320mL水时,2号杯的水面高度与1号杯的水面高度的差约为___________cm(结果保留小数点后一位)②在①的条件下,将2号杯中的一都分水倒入1号杯中,当两个水杯的水面高度相同时,其水面高度约为___________cm(结果保留小数点后一位).26.在平面直角坐标系中,已知抛物线.(1)当时,求抛物线的顶点坐标(2)已知和是抛物线上的两点.若对于,,都有,求的取值范围.27.已知,点,分别在射线,上,将线段绕点顺时针旋转得到线段,过点作的垂线交射线于点.

(1)如图1,当点在射线上时,求证:是的中点(2)如图2,当点在内部时,作,交射线于点,用等式表示线段与的数量关系,并证明。28.在平面直角坐标系中,的半径为1,对于的弦和不在直线上的点,给出如下定义:若点关于直线的对称点在上或其内部,且,则称点是弦的“可及点”.(1)如图,点,.①在点,,中,点___________是弦的“可及点”,其中____________②若点是弦的“可及点”,则点的横坐标的最大值为__________(2)已知是直线上一点,且存在的弦,使得点是弦的“可及点”.记点的横坐标为,直接写出的取值范围.

2024年北京市中考数学真题试卷解析一、选择题.1.【答案】B2.【答案】B3.【答案】C4.【答案】C5.【答案】D6.【答案】D7.【答案】A8.【答案】B【解析】向两方分别延长,连接根据菱形,,则,∵菱形绕点逆时针旋转得到菱形∴点一定在对角线上,且,∴,∵∴∴,,同理可证∵∴∴∴∴该八边形各边长都相等故①正确根据角的平分线的性质定理,得点到该八边形各边所在直线的距离都相等∴④正确根据题意,得∵,∴∴该八边形各内角不相等∴②错误根据∴∴故∴点到该八边形各顶点的距离都相等错误∴③错误故选B.二、填空题.9.【答案】10.【答案】11.【答案】12.【答案】013.【答案】16014.【答案】5516.【答案】①.60②.【解析】解:①节目D的演员的候场时间为故答案为:60②由题意得节目A和C演员人数一样,彩排时长不一样,那么时长长的节目应该放在后面,那么C在A的前面,B和D彩排时长一样,人数不一样,那么人数少的应该往后排,这样等待时长会短一些,那么B在D前面∴①按照顺序,则候场时间为:分钟②按照顺序,则候场时间为:分钟③按照顺序,则候场时间为:分钟④按照顺序,则候场时间为:分钟⑤按照顺序,则候场时间为:分钟⑥按照顺序,则候场时间为:分钟.∴按照顺序彩排,候场时间之和最小故答案为:.三、解答题.17.【答案】18.【答案】19.【答案】320.【答案】(1)见详解(2)【小问1详解】证明:∵是的中点,∴∵∴四边形为平行四边形【小问2详解】解:∵∴在中,,∴∵是的中点,∴∵四边形为平行四边形∴∴在中,由勾股定理得.21.【答案】符合,理由见详解【解析】解:设技术改进后该汽车的A类物质排放量为,则B类类物质排放量为由题意得:解得:∵∴这次技术改进后该汽车的类物质排放量是符合“标准”.22.【答案】(1)(2)【小问1详解】解:由题意得将代入得:解得:将,,代入函数中得:解得:∴【小问2详解】解:∵∴两个一次函数的解析式分别为当时,对于的每一个值,函数的值既大于函数的值,也大于函数的值即当时,对于的每一个值,直线的图像在直线和直线的上方,则画出图象为:由图象得:当直线与直线平行时符合题意或者当与x轴的夹角大于直线与直线平行时的夹角也符合题意∴当直线与直线平行时,∴当时,对于的每一个值,直线的图像在直线和直线的上方时,∴m的取值范围为.23.【答案】(1)①,;②(2)甲,【小问1详解】①从教师评委打分的情况看,分出现的次数最多,故教师评委打分的众数为所以共有45名学生评委给每位选手打分所以学生评委给每位选手打分的中位数应当是第个,从频数分面直方图上看,可得学生评委给每位选手打分的中位数在第4组故答案为:,②去掉教师评委打分中的最高分和最低分,其余8名教师评委打分分别为:,,,,,,,故答案为:【小问2详解】丙在甲、乙、丙三位选手中的排序居中依题意,当,则解得:当时,此时∵,则乙在甲、乙、丙三位选手中的排序居中,不合题意当时,此时∵,则丙在甲、乙、丙三位选手中的排序居中,这三位选手中排序最靠前的是甲故答案为:甲,.24.【答案】(1)见解析(2)【小问1详解】根据题意,得∵∴∴∵平分∴∴∴【小问2详解】∵,不妨设,则∴∵∴,∴∴解得取的中点M,连接则∵∴∴∴∵是的切线∴∴解得故半径的长为.

25.【答案】(1)1.0(2)见详解(3)1.2,8.5【小问1详解】解:由题意得,设V与的函数关系式为:由表格数据得:解得:∴∴当时,∴【小问2详解】解:如图所示,即为所画图像【小问3详解】解:①当时,,由图象可知高度差故答案为:1.2②由图象可知当两个水杯的水面高度相同时,估算高度约为故答案为:.26.【答案】(1);(2)或.【小问1详解】解:把代入得,∴抛物线的顶点坐标为【小问2详解】解:分两种情况:当时,如图,此时∴又∵∴当时,如图,此时解得又∵∴综上,当或,都有.27.【答案】(1)见详解(2),理由见详解【小问1详解】证明:连接

由题意得:,∴∵∴∴∴∵∴∴∴∴∴点是的中点【小问2详解】解:在射线上取点H,使得,取的中点G,连接

∵∴∴∴又∵∴∴,∴∵∴,∵是的中点∴,∴∴∴∴∵∴∴.28.【答案】(1)①,45;②(2)或【小问1详解】解:①:反过来思考,由相对运动理解,作出关于的对称圆∵若点关于直线的对称点在上或其内部,且,则称点是弦的“可及点”∴点C应在的圆内或圆上∵点,∴而∴由对称得:∴为等腰直角三角形∴设半径为则,故在外,不符合题意,故在上,符合题意,故在外,不符合题意∴点是弦的“可及点”可知三点共线∵∴故答案为:,45②取中点为H,连接∵则∴∴点D在以H为圆心,为半径的上方半圆上运动(不包括端点A,B)∴当点轴时,点D横坐标最大∵,∴∴∵点,∴∴此时∴点的横坐标的最大值为故答案为:【小问2详解】解:反

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论