专题5-3 方程组及不等式(组)的应用(考题猜想四种应用问题)原卷版-2023-2024学年7下数学期末考点大串讲(人教版)_第1页
专题5-3 方程组及不等式(组)的应用(考题猜想四种应用问题)原卷版-2023-2024学年7下数学期末考点大串讲(人教版)_第2页
专题5-3 方程组及不等式(组)的应用(考题猜想四种应用问题)原卷版-2023-2024学年7下数学期末考点大串讲(人教版)_第3页
专题5-3 方程组及不等式(组)的应用(考题猜想四种应用问题)原卷版-2023-2024学年7下数学期末考点大串讲(人教版)_第4页
专题5-3 方程组及不等式(组)的应用(考题猜想四种应用问题)原卷版-2023-2024学年7下数学期末考点大串讲(人教版)_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题5-3方程组及不等式(组)的应用(考题猜想,四种应用问题)应用1:列方程组解古算术问题【例题1】(23-24七年级下·江苏南通·阶段练习)“方程”二字最早见于我国《九章算术》这部经典著作中,该书的第八章名为“方程”.如从左到右列出的算筹数分别表示方程中未知数x,y的系数与相应的常数项,即可表示方程,则表示的方程是;请将这两个方程联立成方程组,并求出这个方程组的解.【变式1】.(2024七年级下·江苏·专题练习)古老的“鸡兔同笼问题”:“今有鸡兔同笼,上有三十五头,下有九十四足.问鸡、兔各几何?”这是我国古代数学著作《孙子算经》中记载的数学名题.它曾在好几个世纪里引起过人们的兴趣,这个问题也一定会使在座的各位同学感兴趣.怎样来解答这个问题呢?【变式2】.(2024七年级下·江苏·专题练习)《孙子算经》是唐初作为“算学”教科书的著名的《算经十书》之一,共三卷,上卷叙述算筹记数的制度和乘除法则,中卷举例说明筹算分数法和开平方法,都是了解中国古代筹算的重要资料.下卷收集了一些算术难题,“鸡兔同笼”问题是其中之一.原题如下:令有雉(鸡)兔同笼,上有三十五头,下有九十四足.问雉、兔各几何?【变式3】.(23-24七年级·全国·课后作业)《九章算术》是中国传统数学的重要著作,“方程术”是《九章算术》的重要内容,《九章算术》中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问:牛、羊各直金几何?”意思如下:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问:每头牛、每只羊各值金多少两?”请用二元一次方程组解决这个问题.【变式4】.(23-24七年级下·福建泉州·阶段练习)《孙子算经》是我国古代一部较为普及的算书,许多问题浅显有趣.其中下卷“雉兔同笼”流传尤为广泛.“雉兔同笼”题为:今有雉(鸡)兔同笼,上有三十五头,下有九十四足,问雉兔各几何?上述“雉兔同笼”问题中,鸡和兔各有多少只?【变式5】.(22-23七年级下·江苏南通·期末)我国传统数学名著九章算术记载:“今有牛五、羊二,直金十九两;牛二、羊五,直金十六两问牛、羊各直金几何?”译文:“假设有头牛、只羊,值两银子;头牛、只羊,值两银子,问每头牛、每只羊分别值银子多少两?”根据以上译文,提出以下两个问题:(1)求每头牛、每只羊各值多少两银子?(2)某商人准备用两银子买牛和羊要求既有羊又有牛,且银两须全部用完,且羊的数量不少于牛数量的倍,请问商人有几种购买方法?列出所有的可能.应用2:列方程组与不等式解工程问题【例题2】(2023春•襄汾县期末)政府计划为某村修建一条长为1000米的公路,由甲、乙两个工程队负责施工.已知若甲工程队独立施工5天后,乙工程队再加入,两工程队联合施工8天后,还剩30米的工程.甲工程队工作2天比乙工程队工作3天少施工20米.(1)求甲、乙两工程队每天各施工多少米?(2)现计划由两工程队联合施工完成该工程,两工程队联合施工4天后,因甲队有事,剩下的部分由乙工程队独立完成,若要在12天内完成该项工程,则乙工程队每天至少应再多施工多少米?【变式1】.(2023春•梁平区期末)某玩具厂接到一笔1500盒积木的订单,需要在15天内完成,已知该种积木每盒里都有4个正方体积木和4个半圆形积木.玩具厂现在有100名工人,每人每天能加工9个正方体积木或6个半圆形积木,但每人一天只能加工一种积木,玩具厂每天加工的正方体积木和半圆形积木数量正好全部配套(一样多).(1)玩具厂每天能生产多少盒积木?(2)为了能在规定期限内完成订单,玩具厂决定从其他车间调来名工人帮忙,新调来的工人由于工作不熟练,只会加工正方体积木,且每人每天只能加工6个,为了确保每天加工的两种积木数量正好全部配套,重新对100名熟练工进行分工.若要在规定时间内完成订单,求的最小值.【变式2】.(2022春•丹江口市期末)“十淅高速”项目工程建设已近尾声,其中某施工路段总长90公里,若由甲、乙两工程队合做6个月可以完成,若甲工程做4个月,乙工程队做9个月也可以完成.(1)甲、乙两队每月的施工路段各是多少公里?(2)已知甲队每月施工费用为12万元,乙队每月施工费用为9万元,按要求该工程总费用不超过130万元,工程必须在10个月内竣工.为了确保经费和工期,采取甲队做个月,乙队做个月、均为整数)分工合作的方式施工,请你设计施工费用最低的施工方案.【变式3】(2024·安徽合肥·一模)某工程由甲、乙两个工程队施工,工程小组综合比较两工程队发现,甲工程队施工2天的费用比乙工程队施工3天的费用少0.3万元,甲、乙两工程队合作施工一天的费用为2.6万元.单独完成这项工程,甲工程队刚好如期完成,乙工程队要比规定日期多用5天,初步计算,若单独请甲工程队需付30万元.(1)请计算甲、乙工程队每天所需的施工费用各是多少万元?(2)为降低工程施工费用,甲、乙两工程队先合作施工若干天,再由乙工程队全部完成,求甲、乙两工程队合作施工多少天时,在不耽误工期的情况下,施工费用最低.应用3:列方程组与不等式解购物问题【例题3】(2024七年级下·全国·专题练习)我们度过了寒冬,迎来了充满希望的春天,同学们将走出教室进行适当的体育锻炼,7.1班想集体购买跳绳和毽子、第一次买20条跳绳和30个毽子共花了590元,第二次又买了10条跳绳和10个毽子共花了260元.请回答下面的两个问题:(1)求跳绳和毽子的单价是多少元?(2)若7.9班也打算购买同样的跳绳和毽子共50个,且总花费不超过600元,问7.9班的跳绳最多买多少条?【变式1】.(22-23七年级下·重庆黔江·期中)某体育用品店准备购进甲,乙品牌乒乓球两种,若购进甲种乒乓球10个,乙种乒乓球5个,需要100元,若购进甲种乒乓球5个,乙种乒乓球3个,需要55元.(1)求购进甲,乙两种乒乓球每个各需多少元?(2)若该体育用品店刚好用了1000元购进这两种乒乓球,考虑顾客需求,要求购进甲种乒乓球的数量不少于乙种乒乓球数量的6倍,且乙种乒乓球数量不少于23个,那么该文具店共有哪几种进货方案?【变式2】.(21-22七年级下·安徽蚌埠·阶段练习)某中学为打造书香校园,计划购进甲、乙两种规格的书柜放置新购进的图书,调查发现,若购买甲种书柜3个、乙种书柜2个,共需资金1020元;若购买甲种书柜4个,乙种书柜3个,共需资金1440元.(1)甲、乙两种书柜每个的价格分别是多少元?(2)若该校计划购进这两种规格的书柜共20个,其中乙种书柜的数量不少于甲种书柜的数量,学校至多能够提供资金4320元,求最多能买多少个甲种书柜.【变式3】.(21-22七年级下·山西忻州·阶段练习)为保护环境,我市公交公司计划购买A型和B型两种环保节能公交车共10辆.若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元.(1)求购买A型和B型公交车每辆各需多少万元?(2)预计在某线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客总和不少于680万人次,则该公司有哪几种购车方案?【变式4】.(22-23七年级下·四川凉山·期末)某体育用品店准备购进甲、乙两种品牌跳绳,若购买甲种跳绳根,乙种跳绳5根,需要元,若购买甲种跳绳5根,乙种跳绳3根,需要元.(1)求购进甲,乙两种跳绳每根各需多少元?(2)若该体育用品店刚好用了元购进这两种跳绳,考虑顾客需求,要求购进甲种跳绳的数量不少于乙种跳绳数量的3倍,且乙种跳绳数量不少于根,那么该文具店共有哪几种购买方案?(3)若该体育用品店销售每根甲种跳绳可获利润3元,销售每根乙种跳绳可获利润4元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?【变式5】.(21-22七年级下·新疆阿克苏·期末)为奖励在“数学知识竞赛”中表现优异的班级,学校准备从体育用品商场一次性购买若干个篮球和足球,已知购买2个篮球和3个足球共需340元,购买5篮球和5个足球共需700元.(1)求篮球和足球的单价各是多少元?(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买篮球和足球的总费用不超过1440元,学校最多可以购买多少个篮球?【变式6】.(21-22七年级下·辽宁盘锦·期末)某校在商场购买了两种品牌的足球,已知购买4个A品牌的足球和6个B品牌的足球共需620元;购买6个A品牌的足球和8个B品牌的足球共需860元.(1)求两种品牌的足球的单价;(2)该校决定再次购买两种品牌的足球共50个,恰逢该商场对足球的售价进行调整,A品牌足球的售价比第一次购买时提高了,若此次购买两种足球的总费用不超过3100元,那么这所学校最多可购买多少个B品牌的足球?应用4:列方程组与不等式(组)解方案问题【例题4】(22-23七年级下·四川凉山·期末)某体育用品店准备购进甲、乙两种品牌跳绳,若购买甲种跳绳根,乙种跳绳5根,需要元,若购买甲种跳绳5根,乙种跳绳3根,需要元.(1)求购进甲,乙两种跳绳每根各需多少元?(2)若该体育用品店刚好用了元购进这两种跳绳,考虑顾客需求,要求购进甲种跳绳的数量不少于乙种跳绳数量的3倍,且乙种跳绳数量不少于根,那么该文具店共有哪几种购买方案?(3)若该体育用品店销售每根甲种跳绳可获利润3元,销售每根乙种跳绳可获利润4元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?【变式1】.(22-23七年级下·辽宁大连·期末)西岗区某中学为落实教育部办公厅关于进一步加强中小学生体质管理的通知文件要求,决定增设篮球、足球两门选修课程,为此需要购进一批篮球和足球已知购买个篮球和个足球需要元;购买个篮球和个足球需要元.(1)根据以上信息解答若需要购买个篮球和个足球需要多少钱;(2)学校计划采购篮球、足球共个,并要求篮球不少于个,且总费用不超过元,则有哪几种购买方案?【变式2】.(22-23七年级下·广西河池·期末)为了实现县域教育均衡发展,某县计划对,两类学校分批进行改进,根据预算,改造一所类学校和两所类学校共需资金万元,改造两所类学校和一所类学校共需资金万元.(1)改造一所类学校和一所类学校所需的资金分别是多少万元?(2)该县计划今年对、两类学校共所进行改造,改造资金由国家财政和地方财政共同承担.若今年国家财政拨付的改造资金不超过万元,地方财政投入的改造资金不少于万元,其中地方财政投入到、两类学校的改造资金分别为每所万元和万元,请你通过计算求出改造方案?【变式3】.(22-23七年级下·内蒙古通辽·期末)在疫情期间,重庆某医药公司往武汉运送医药物资,若用辆型车辆和辆型车辆装满物资一次可以运送吨;用辆型车辆和辆型车辆装满物资一次可以运送吨根据以上信息,解答下列问题:(1)通过列方程组求出:辆型车辆和辆型车辆都装满物资一次分别运多少吨?(2)该医药公司准备将一批医药物资一次性运输至武汉,于是从租车公司租用了和两种型号车辆共辆,其中型车辆每辆要付费元,型车辆每辆要付费元,若付费总金额不超过元,且物资不少于吨,请问怎么安排车辆总费用最少?【变式4】.(22-23七年级下·湖北武汉·阶段练习)“全民阅读”深入人心,读书好,好读书,读好书,让人终身受益.为满足同学们的读书需求,学校图书馆准备到新华书店采购文学名著和动漫书两类图书,经了解,本文学名著和本动漫书共需元,本文学名著与本动漫书的费用一样(注:所采购的文学名著价格都一样,所采购的动漫书价格都一样).(1)求每本文学名著和动漫书各多少元?(2)若学校要求购买文学名著比动漫书多本,动漫书和文学名著总数不低于本,总费用不超过元,请问有几种购书方案?(3)在()的条件下,若学校实际购买时,文学名著单价上调元本,动漫书单价下调了元本,此时购买这两种书籍所需最少费用为元,则的值为_____.【变式5

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论