2023届河南省扶沟高中高三数学第一学期期末达标检测模拟试题含解析_第1页
2023届河南省扶沟高中高三数学第一学期期末达标检测模拟试题含解析_第2页
2023届河南省扶沟高中高三数学第一学期期末达标检测模拟试题含解析_第3页
2023届河南省扶沟高中高三数学第一学期期末达标检测模拟试题含解析_第4页
2023届河南省扶沟高中高三数学第一学期期末达标检测模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高三上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知是边长为的正三角形,若,则A. B.C. D.2.在等腰直角三角形中,,为的中点,将它沿翻折,使点与点间的距离为,此时四面体的外接球的表面积为().A. B. C. D.3.已知平面向量,,,则实数x的值等于()A.6 B.1 C. D.4.如图所示,直三棱柱的高为4,底面边长分别是5,12,13,当球与上底面三条棱都相切时球心到下底面距离为8,则球的体积为()A.1605π3 B.6425.“且”是“”的()A.充分非必要条件 B.必要非充分条件C.充要条件 D.既不充分也不必要条件6.已知空间两不同直线、,两不同平面,,下列命题正确的是()A.若且,则 B.若且,则C.若且,则 D.若不垂直于,且,则不垂直于7.一个袋中放有大小、形状均相同的小球,其中红球1个、黑球2个,现随机等可能取出小球,当有放回依次取出两个小球时,记取出的红球数为;当无放回依次取出两个小球时,记取出的红球数为,则()A., B.,C., D.,8.等差数列的前项和为,若,,则数列的公差为()A.-2 B.2 C.4 D.79.记为等差数列的前项和.若,,则()A.5 B.3 C.-12 D.-1310.“”是“函数的图象关于直线对称”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件11.若为虚数单位,网格纸上小正方形的边长为1,图中复平面内点表示复数,则表示复数的点是()A.E B.F C.G D.H12.某校团委对“学生性别与中学生追星是否有关”作了一次调查,利用列联表,由计算得,参照下表:0.010.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.828得到正确结论是()A.有99%以上的把握认为“学生性别与中学生追星无关”B.有99%以上的把握认为“学生性别与中学生追星有关”C.在犯错误的概率不超过0.5%的前提下,认为“学生性别与中学生追星无关”D.在犯错误的概率不超过0.5%的前提下,认为“学生性别与中学生追星有关”二、填空题:本题共4小题,每小题5分,共20分。13.已知函数,(其中e为自然对数的底数),若关于x的方程恰有5个相异的实根,则实数a的取值范围为________.14.已知在等差数列中,,,前n项和为,则________.15.已知向量,且向量与的夹角为_______.16.设集合,(其中e是自然对数的底数),且,则满足条件的实数a的个数为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆:的左、右焦点分别为,,焦距为2,且经过点,斜率为的直线经过点,与椭圆交于,两点.(1)求椭圆的方程;(2)在轴上是否存在点,使得以,为邻边的平行四边形是菱形?如果存在,求出的取值范围,如果不存在,请说明理由.18.(12分)已知函数f(x)=x-1+x+2,记f(x)(Ⅰ)解不等式f(x)≤5;(Ⅱ)若正实数a,b满足1a+119.(12分)在直角坐标系中,直线的参数方程为(为参数),以为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求的普通方程和的直角坐标方程;(2)把曲线向下平移个单位,然后各点横坐标变为原来的倍得到曲线(纵坐标不变),设点是曲线上的一个动点,求它到直线的距离的最小值.20.(12分)已知,,且.(1)求的最小值;(2)证明:.21.(12分)设为等差数列的前项和,且,.(1)求数列的通项公式;(2)若满足不等式的正整数恰有个,求正实数的取值范围.22.(10分)已知数列和满足,,,,.(Ⅰ)求与;(Ⅱ)记数列的前项和为,且,若对,恒成立,求正整数的值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】

由可得,因为是边长为的正三角形,所以,故选A.2、D【解析】

如图,将四面体放到直三棱柱中,求四面体的外接球的半径转化为求三棱柱外接球的半径,然后确定球心在上下底面外接圆圆心连线中点,这样根据几何关系,求外接球的半径.【详解】中,易知,翻折后,,,设外接圆的半径为,,,如图:易得平面,将四面体放到直三棱柱中,则球心在上下底面外接圆圆心连线中点,设几何体外接球的半径为,,四面体的外接球的表面积为.故选:D【点睛】本题考查几何体的外接球的表面积,意在考查空间想象能力,和计算能力,属于中档题型,求几何体的外接球的半径时,一般可以用补形法,因正方体,长方体的外接球半径容易求,可以将一些特殊的几何体补形为正方体或长方体,比如三条侧棱两两垂直的三棱锥,或是构造直角三角形法,确定球心的位置,构造关于外接球半径的方程求解.3、A【解析】

根据向量平行的坐标表示即可求解.【详解】,,,,即,故选:A【点睛】本题主要考查了向量平行的坐标运算,属于容易题.4、A【解析】

设球心为O,三棱柱的上底面ΔA1B1C1的内切圆的圆心为O1,该圆与边B【详解】如图,设三棱柱为ABC-A1B1C所以底面ΔA1B1C1为斜边是A1C1则圆O1的半径为O设球心为O,则由球的几何知识得ΔOO1M所以OM=2即球O的半径为25所以球O的体积为43故选A.【点睛】本题考查与球有关的组合体的问题,解答本题的关键有两个:(1)构造以球半径R、球心到小圆圆心的距离d和小圆半径r为三边的直角三角形,并在此三角形内求出球的半径,这是解决与球有关的问题时常用的方法.(2)若直角三角形的两直角边为a,b,斜边为c,则该直角三角形内切圆的半径r=a+b-c5、A【解析】

画出“,,,所表示的平面区域,即可进行判断.【详解】如图,“且”表示的区域是如图所示的正方形,记为集合P,“”表示的区域是单位圆及其内部,记为集合Q,显然是的真子集,所以答案是充分非必要条件,故选:.【点睛】本题考查了不等式表示的平面区域问题,考查命题的充分条件和必要条件的判断,难度较易.6、C【解析】因答案A中的直线可以异面或相交,故不正确;答案B中的直线也成立,故不正确;答案C中的直线可以平移到平面中,所以由面面垂直的判定定理可知两平面互相垂直,是正确的;答案D中直线也有可能垂直于直线,故不正确.应选答案C.7、B【解析】

分别求出两个随机变量的分布列后求出它们的期望和方差可得它们的大小关系.【详解】可能的取值为;可能的取值为,,,,故,.,,故,,故,.故选B.【点睛】离散型随机变量的分布列的计算,应先确定随机变量所有可能的取值,再利用排列组合知识求出随机变量每一种取值情况的概率,然后利用公式计算期望和方差,注意在取球模型中摸出的球有放回与无放回的区别.8、B【解析】

在等差数列中由等差数列公式与下标和的性质求得,再由等差数列通项公式求得公差.【详解】在等差数列的前项和为,则则故选:B【点睛】本题考查等差数列中求由已知关系求公差,属于基础题.9、B【解析】

由题得,,解得,,计算可得.【详解】,,,,解得,,.故选:B【点睛】本题主要考查了等差数列的通项公式,前项和公式,考查了学生运算求解能力.10、A【解析】

先求解函数的图象关于直线对称的等价条件,得到,分析即得解.【详解】若函数的图象关于直线对称,则,解得,故“”是“函数的图象关于直线对称”的充分不必要条件.故选:A【点睛】本题考查了充分不必要条件的判断,考查了学生逻辑推理,概念理解,数学运算的能力,属于基础题.11、C【解析】

由于在复平面内点的坐标为,所以,然后将代入化简后可找到其对应的点.【详解】由,所以,对应点.故选:C【点睛】此题考查的是复数与复平面内点的对就关系,复数的运算,属于基础题.12、B【解析】

通过与表中的数据6.635的比较,可以得出正确的选项.【详解】解:,可得有99%以上的把握认为“学生性别与中学生追星有关”,故选B.【点睛】本题考查了独立性检验的应用问题,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

作出图象,求出方程的根,分类讨论的正负,数形结合即可.【详解】当时,令,解得,所以当时,,则单调递增,当时,,则单调递减,当时,单调递减,且,作出函数的图象如图:(1)当时,方程整理得,只有2个根,不满足条件;(2)若,则当时,方程整理得,则,,此时各有1解,故当时,方程整理得,有1解同时有2解,即需,,因为(2),故此时满足题意;或有2解同时有1解,则需,由(1)可知不成立;或有3解同时有0解,根据图象不存在此种情况,或有0解同时有3解,则,解得,故,(3)若,显然当时,和均无解,当时,和无解,不符合题意.综上:的范围是,故答案为:,【点睛】本题主要考查了函数零点与函数图象的关系,考查利用导数研究函数的单调性,意在考查学生对这些知识的理解掌握水平和分析推理能力,属于中档题.14、39【解析】

设等差数列公差为d,首项为,再利用基本量法列式求解公差与首项,进而求得即可.【详解】设等差数列公差为d,首项为,根据题意可得,解得,所以.故答案为:39【点睛】本题考查等差数列的基本量计算以及前n项和的公式,属于基础题.15、1【解析】

根据向量数量积的定义求解即可.【详解】解:∵向量,且向量与的夹角为,∴||;所以:•()2cos2﹣2=1,故答案为:1.【点睛】本题主要考查平面向量的数量积的定义,属于基础题.16、【解析】

可看出,这样根据即可得出,从而得出满足条件的实数的个数为1.【详解】解:,或,在同一平面直角坐标系中画出函数与的图象,由图可知与无交点,无解,则满足条件的实数的个数为.故答案为:.【点睛】考查列举法的定义,交集的定义及运算,以及知道方程无解,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)存在;实数的取值范围是【解析】

(1)根据椭圆定义计算,再根据,,的关系计算即可得出椭圆方程;(2)设直线方程为,与椭圆方程联立方程组,求出的范围,根据根与系数的关系求出的中点坐标,求出的中垂线与轴的交点横,得出关于的函数,利用基本不等式得出的范围.【详解】(1)由题意可知,,.又,,,椭圆的方程为:.(2)若存在点,使得以,为邻边的平行四边形是菱形,则为线段的中垂线与轴的交点.设直线的方程为:,,,,,联立方程组,消元得:,△,又,故.由根与系数的关系可得,设的中点为,,则,,线段的中垂线方程为:,令可得,即.,故,当且仅当即时取等号,,且.的取值范围是,.【点睛】本题主要考查了椭圆的性质,考查直线与椭圆的位置关系,意在考查学生对这些知识的理解掌握水平和分析推理能力.18、(Ⅰ){x|-3≤x≤2}(Ⅱ)见证明【解析】

(Ⅰ)由题意结合不等式的性质零点分段求解不等式的解集即可;(Ⅱ)首先确定m的值,然后利用柯西不等式即可证得题中的不等式.【详解】(Ⅰ)①当x>1时,f(x)=(x-1)+(x+2)=2x+1≤5,即x≤2,∴1<x≤2;②当-2≤x≤1时,f(x)=(1-x)+(x+2)=3≤5,∴-2≤x≤1;③当x<-2时,f(x)=(1-x)-(x+2)=-2x-1≤5,即x≥-3,∴-3≤x<-2.综上所述,原不等式的解集为{x|-3≤x≤2}.(Ⅱ)∵f(x)=x-1当且仅当-2≤x≤1时,等号成立.∴f(x)的最小值m=3.∴[(即2a当且仅当2a×1又1a+1b=∴2a【点睛】本题主要考查绝对值不等式的解法,柯西不等式及其应用,绝对值三角不等式求最值的方法等知识,意在考查学生的转化能力和计算求解能力.19、(1),;(2).【解析】

(1)在直线的参数方程中消去参数可得出直线的普通方程,在曲线的极坐标方程两边同时乘以得,进而可化简得出曲线的直角坐标方程;(2)根据变换得出的普通方程为,可设点的坐标为,利用点到直线的距离公式结合正弦函数的有界性可得出结果.【详解】(1)由(为参数),得,化简得,故直线的普通方程为.由,得,又,,.所以的直角坐标方程为;(2)由(1)得曲线的直角坐标方程为,向下平移个单位得到,纵坐标不变,横坐标变为原来的倍得到曲线的方程为,所以曲线的参数方程为(为参数).故点到直线的距离为,当时,最小为.【点睛】本题考查曲线的参数方程、极坐标方程与普通方程的相互转化,同时也考查了利用椭圆的参数方程解决点到直线的距离最值的求解,考查计算能力,属于中等题.20、(1)(2)证明见解析【解析】

(1)利用基本不等式即可求得最小值;(2)关键是配凑系数,进而利用基本不等式得证.【详解】(1),当且仅当“”时取等号,故的最小值为;(2),当且仅当时取等号,此时.故.【点睛】本题主要考查基本不等式的运用,属于基础题.21、(1);(2).【解析】

(1)设等差数列的公差为,根据题意得出关于和的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论