2025届黑龙江省林口林业局中学高一下数学期末达标检测试题含解析_第1页
2025届黑龙江省林口林业局中学高一下数学期末达标检测试题含解析_第2页
2025届黑龙江省林口林业局中学高一下数学期末达标检测试题含解析_第3页
2025届黑龙江省林口林业局中学高一下数学期末达标检测试题含解析_第4页
2025届黑龙江省林口林业局中学高一下数学期末达标检测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届黑龙江省林口林业局中学高一下数学期末达标检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知,,,,则下列等式一定成立的是()A. B. C. D.2.函数的图象与函数的图象交点的个数为()A. B. C. D.3.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的体积为()A. B.C. D.4.已知点和点,且,则实数的值是()A.或 B.或 C.或 D.或5.若三个实数a,b,c成等比数列,其中a=3-5,c=3+A.2 B.-2 C.±2 D.46.《九章算术》卷第六《均输》中,提到如下问题:“今有竹九节,下三节容量四升,上四节容量三升.问中间二节欲均容,各多少?”其大致意思是说,若九节竹每节的容量依次成等差数列,下三节容量四升,上四节容量三升,则中间两节的容量各是()A.升、升 B.升、升C.升、升 D.升、升7.已知实数满足且,则下列选项中不一定成立的是()A. B. C. D.8.边长为的正三角形中,点在边上,,是的中点,则()A. B. C. D.9.已知数列满足,为其前项和,则不等式的的最大值为()A.7 B.8 C.9 D.1010.阅读如图所示的程序框图,运行相应的程序,输出的结果是()A.3 B.11 C.38 D.123二、填空题:本大题共6小题,每小题5分,共30分。11.若采用系统抽样的方法从420人中抽取21人做问卷调查,为此将他们随机编号为1,2,…,420,则抽取的21人中,编号在区间[241,360]内的人数是______12.已知三个事件A,B,C两两互斥且,则P(A∪B∪C)=__________.13.如图,某人在高出海平面方米的山上P处,测得海平面上航标A在正东方向,俯角为,航标B在南偏东,俯角,且两个航标间的距离为200米,则__________米.14.在平面直角坐标系中,点到直线的距离为______.15.有6根细木棒,其中较长的两根分别为,,其余4根均为,用它们搭成三棱锥,则其中两条较长的棱所在的直线所成的角的余弦值为.16.在等比数列中,,,则_____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(I)求的最小正周期;(II)求在上的最大值与最小值.18.已知直线与直线的交点为P,点Q是圆上的动点.(1)求点P的坐标;(2)求直线的斜率的取值范围.19.数列中,且满足.(1)求数列的通项公式;(2)设,求;⑶设,是否存在最大的整数,使得对任意,均有成立?若存在,求出的值;若不存在,请说明理由.20.直线的方程为.(1)若在两坐标轴上的截距相等,求的值;(2)若不经过第二象限,求实数的取值范围.21.在中,角的对边分别为.已知(1)若,,求的面积;(2)若的面积为,且,求的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】试题分析:相除得,又,所以.选B.【考点定位】指数运算与对数运算.2、D【解析】

通过对两函数的表达式进行化简,变成我们熟悉的函数模型,比如反比例、一次函数、指数、对数及三角函数,看图直接判断【详解】由,作图如下:共6个交点,所以答案选择D【点睛】函数图象交点个数问题与函数零点、方程根可以作相应等价,用函数零点及方程根本题不现实,所以我们更多去考虑分别作图象,直接看交点个数.3、C【解析】

先通过三视图找到几何体原图,再求几何体的体积得解.【详解】由题得该几何体是一个边长为4的正方体挖去一个圆锥(圆锥底面在正方体上表面上,圆锥顶部朝下),所以几何体体积为.故选:C【点睛】本题主要考查三视图还原几何体原图,考查组合体体积的计算,意在考查学生对这些知识的理解掌握水平.4、A【解析】

直接利用两点间距离公式得到答案.【详解】已知点和点故答案选A【点睛】本题考查了两点间距离公式,意在考查学生的计算能力.5、C【解析】

由实数a,b,c成等比数列,得b2【详解】由实数a,b,c成等比数列,得b2所以b=±2.故选C.【点睛】本题主要考查了等比数列的基本性质,属于基础题.6、D【解析】

由题意知九节竹的容量成等差数列,至下而上各节的容量分别为a1,a2,…,an,公差为d,利用等差数列的前n项和公式和通项公式列出方程组,求出首项和公差,由此能求出中间一节的容量.【详解】由题意知九节竹的容量成等差数列,至下而上各节的容量分别为a1,a2,…,a9,公差为d,即=4,=3,∴=4,=3,解得,,∴中间两节的容量,,故选:D.【点睛】本题考查等差数列的通项公式,利用等差数列的通项公式列出方程组,解出首项与公差即可,考查计算能力,属于基础题.7、D【解析】

由题设条件可以得到,从而可判断A,B中的不等式都是正确的,再把题设变形后可得,从而C中的不等式也是成立的,当,D中的不等式不成立,而时,它又是成立的,故可得正确选项.【详解】因为且,故,所以,故A正确;又,故,故B正确;而,故,故C正确;当时,,当时,有,故不一定成立,综上,选D.【点睛】本题考查不等式的性质,属于基础题.8、D【解析】

,故选D.9、B【解析】

由题意,整理得出是一个首项为12,公比为的等比数列,从而求出,再求出其前项和,然后再求出的表达式,再代入数验证出的最大值即可.【详解】由可得,即,所以数列是等比数列,又,所以,故,解得,(),所以的最大值为8.选B.【点睛】本题考查数列的递推式以及数列求和的方法分组求和,属于数列中的综合题,考查了转化的思想,构造的意识,本题难度较大,思维能力要求高.10、B【解析】试题分析:通过框图的要求;将第一次循环的结果写出,通过判断框;再将第二次循环的结果写出,通过判断框;输出结果.解;经过第一次循环得到a=12+2=3经过第一次循环得到a=32+2=11不满足判断框的条件,执行输出11故选B点评:本题考查程序框图中的循环结构常采用将前几次循环的结果写出找规律.二、填空题:本大题共6小题,每小题5分,共30分。11、6【解析】试题分析:由题意得,编号为,由得共6个.考点:系统抽样12、0.9【解析】

先计算,再计算【详解】故答案为0.9【点睛】本题考查了互斥事件的概率计算,属于基础题型.13、1【解析】

根据题意利用方向坐标,根据三角形边角关系,利用余弦定理列方程求出的值.【详解】航标在正东方向,俯角为,由题意得,.航标在南偏东,俯角为,则有,.所以,;由余弦定理知,即,可求得(米.故答案为:1.【点睛】本题考查方向坐标以及三角形边角关系的应用问题,考查余弦定理应用问题,是中档题.14、2【解析】

利用点到直线的距离公式即可得到答案。【详解】由点到直线的距离公式可知点到直线的距离故答案为2【点睛】本题主要考查点到直线的距离,熟练掌握公式是解题的关键,属于基础题。15、【解析】

分较长的两条棱所在直线相交,和较长的两条棱所在直线异面两种情况讨论,结合三棱锥的结构特征,即可求出结果.【详解】当较长的两条棱所在直线相交时,如图所示:不妨设,,,所以较长的两条棱所在直线所成角为,由勾股定理可得:,所以,所以此时较长的两条棱所在直线所成角的余弦值为;当较长的两条棱所在直线异面时,不妨设,,则,取CD的中点为O,连接OA,OB,所以CD⊥OA,CD⊥OB,而,所以OA+OB<AB,不能构成三角形。所以此情况不存在。故答案为:.【点睛】本题主要考查异面直线所成的角,熟记异面直线所成角的概念,以及三棱锥的结构特征即可,属于常考题型.16、1【解析】

由等比数列的性质可得,结合通项公式可得公比q,从而可得首项.【详解】根据题意,等比数列中,其公比为,,则,解可得,又由,则有,则,则;故答案为:1.【点睛】本题考查等比数列的通项公式以及等比数列性质(其中m+n=p+q)的应用,也可以利用等比数列的基本量来解决.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(I);(II)3,.【解析】

(I)利用降次公式和辅助角公式化简解析式,由此求得的最小正周期.(II)根据函数的解析式,以及的取值范围,结合三角函数值域的求法,求得在区间上的最大值与最小值.【详解】(I)的最小正周期.(Ⅱ),.【点睛】本小题主要考查降次公式和辅助角公式,考查三角函数在闭区间上的最值的求法,属于中档题.18、(1);(2).【解析】

(1)联立方程求解即可;(2)设直线PQ的斜率为,得直线PQ的方程为,由题意,直线PQ与圆有公共点得求解即可【详解】(1)由得∴P的坐标为的坐标为.(2)由得∴圆心的坐标为,半径为设直线PQ的斜率为,则直线PQ的方程为由题意可知,直线PQ与圆有公共点即或∴直线PQ的斜率的取值范围为.【点睛】本题考查直线交点坐标,考查直线与圆的位置关系,考查运算能力,是基础题19、(1);(2)(3)7.【解析】

(1)由可得为等差数列,从而可得数列的通项公式;(2)先判断时数列的各项为正数,时数列各项为负数,分两种情况讨论分别利用等差数列求和公式求解即可;(3)求得利用裂项相消法求得,由可得结果.【详解】(1)由题意,,为等差数列,设公差为,由题意得,.(2)若时,时,,故.(3),若对任意成立,的最小值是,对任意成立,的最大整数值是7,即存在最大整数使对任意,均有【点睛】本题主要考查等差数列的通项公式与求和公式,以及裂项相消法求和,属于中档题.裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,常见的裂项技巧:(1);(2);(3);(4);此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.20、(1)0或2;(2).【解析】

(1)当过坐标原点时,可求得满足题意;当不过坐标原点时,可根据直线截距式,利用截距相等构造方程求得结果;(2)当时,可得直线不经过第二象限;当时,结合函数图象可知斜率为正,且在轴截距小于等于零,从而构造不等式组求得结果.【详解】(1)当过坐标原点时,,解得:,满足题意当不过坐标原点时,即时若,即时,,不符合题意若,即时,方程可整理为:,解得:综上所述:或(2)当,即时,,不经过第二象限,满足题意当,即时,方程可整理为:,解得:综上所述:的取值范围为:【点睛】本题考查直

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论