




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省德州市乐陵市第一中学2025届高一数学第二学期期末检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若,则t=()A.32 B.23 C.14 D.132.某三棱柱的底面是边长为2的正三角形,高为6,则该三棱柱的体积为A. B. C. D.3.在锐角中,若,,,则()A. B. C. D.4.若正方体的棱长为,点,在上运动,,四面体的体积为,则()A. B. C. D.5.设,则“数列为等比数列”是“数列满足”的()A.充分非必要条件 B.必要非充分条件C.充要条件 D.既非充分也非必要条件6.某单位有职工160人,其中业务员有104人,管理人员32人,后勤服务人员24人,现用分层抽样法从中抽取一个容量为20的样本,则抽取管理人员()A.3人 B.4人 C.7人 D.12人7.在正四棱柱中,,,则与所成角的余弦值为()A. B. C. D.8.已知平面向量满足:,,,若,则的值为()A. B. C.1 D.-19.如果数列的前项和为,那么数列的通项公式是()A. B.C. D.10.甲、乙、丙、丁4名田径选手参加集训,将挑选一人参加400米比赛,他们最近10次测试成绩的平均数和方差如下表;根据表中数据,应选哪位选手参加比赛更有机会取得好成绩?()甲乙丙丁平均数59575957方差12121010A.甲 B.乙 C.丙 D.丁二、填空题:本大题共6小题,每小题5分,共30分。11.已知与的夹角为,,,则________.12.已知圆,直线l被圆所截得的弦的中点为.则直线l的方程是________(用一般式直线方程表示).13.已知为等差数列,,,,则______.14.____________.15.已知数列满足,若,则数列的通项______.16.如图,正方体中,的中点为,的中点为,为棱上一点,则异面直线与所成角的大小为__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.从代号为A、B、C、D、E的5个人中任选2人(1)列出所有可能的结果;(2)若A、B、C三人为男性,D、E两人为女性,求选出的2人中不全为男性的概率.18.如图,在四棱锥P~ABCD中,底面ABCD为矩形,E,F分别为AD,PB的中点,PE⊥平面ABCD,AP⊥DP,AP=DP.(1)求证:EF∥平面PCD;(2)设G为AB中点,求证:平面EFG⊥平面PCD.19.已知点,,动点满足,记M的轨迹为曲线C.(1)求曲线C的方程;(2)过坐标原点O的直线l交C于P、Q两点,点P在第一象限,轴,垂足为H.连结QH并延长交C于点R.(i)设O到直线QH的距离为d.求d的取值范围;(ii)求面积的最大值及此时直线l的方程.20.设.(1)若不等式对一切实数恒成立,求实数的取值范围;(2)解关于的不等式(R).21.已知数列满足,.(1)证明:是等比数列;(2)求数列的前n项和.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
先计算得到,再根据得到等式解得答案.【详解】故答案选B【点睛】本题考查了向量的计算,意在考查学生对于向量运算法则的灵活运用及计算能力.2、C【解析】
计算结果.【详解】因为底面是边长为2的正三角形,所以底面的面积为,则该三棱柱的体积为.【点睛】本题考查了棱柱的体积公式,属于简单题型.3、D【解析】
由同角三角函数关系式,先求得,再由余弦定理即可求得的值.【详解】因为为锐角三角形,由同角三角函数关系式可得又因为,由余弦定理可得代入可得所以故选:D【点睛】本题考查了同角三角函数关系式应用,余弦定理求三角形的边,属于基础题.4、C【解析】
由题意得,到平面的距离不变=,且,即可得三棱锥的体积,利用等体积法得.【详解】正方体的棱长为,点,在上运动,,如图所示:点到平面的距离=,且,所以.所以三棱锥的体积=.利用等体积法得.故选:C.【点睛】本题考查了正方体的性质,等体积法求三棱锥的体积,属于基础题.5、A【解析】
“数列为等比数列”,则,数列满足.反之不能推出,可以举出反例.【详解】解:“数列为等比数列”,则,数列满足.充分性成立;反之不能推出,例如,数列满足,但数列不是等比数列,即必要性不成立;故“数列为等比数列”是“数列满足”的充分非必要条件故选:.【点睛】本题考查了等比数列的定义、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.6、B【解析】
根据分层抽样原理求出应抽取的管理人数.【详解】根据分层抽样原理知,应抽取管理人员的人数为:故选:B【点睛】本题考查了分层抽样原理应用问题,是基础题.7、A【解析】
连结,结合几何体的特征,直接求解与所成角的余弦值即可.【详解】如图所示:在正四棱柱中,=1,=2,连结,则与所成角就是中的,所以与所成角的余弦值为:==.故选A.【点睛】本题考查正四棱柱的性质,直线与直线所成角的求法,考查空间想象能力以及计算能力,属于基础题.8、C【解析】
将代入,化简得到答案.【详解】故答案选C【点睛】本题考查了向量的运算,意在考查学生的计算能力.9、D【解析】
利用计算即可.【详解】当时,当时,即,故数列为等比数列则因为,所以故选:D【点睛】本题主要考查了已知来求,关键是利用来求解,属于基础题.10、D【解析】
由平均数及方差综合考虑得结论.【详解】解:由四位选手的平均数可知,乙与丁的平均速度快;再由方差越小发挥水平越稳定,可知丙与丁稳定,故应选丁选手参加比赛更有机会取得好成绩.故选:.【点睛】本题考查平均数与方差,熟记结论是关键,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、3【解析】
将平方再利用数量积公式求解即可.【详解】因为,故.化简得.因为,故.故答案为:3【点睛】本题主要考查了模长与数量积的综合运用,经常利用平方去处理.属于基础题.12、【解析】
将圆的方程化为标椎方程,找出圆心坐标与半径,根据垂径定理得到直线与直线垂直,根据直线的斜率求出直线的斜率,确定出直线的方程即可.【详解】由已知圆的方程可得,所以圆心,半径为3,由垂径定理知:直线直线,因为直线的斜率,所以直线的斜率,则直线的方程为,即.故答案为:.【点睛】本题考查直线与圆的位置关系,考查逻辑思维能力和运算能力,属于常考题.13、【解析】
由等差数列的前项和公式,代入计算即可.【详解】已知为等差数列,且,,所以,解得或(舍)故答案为【点睛】本题考查了等差数列前项和公式的应用,属于基础题.14、【解析】
在分式的分子和分母中同时除以,然后利用常见数列的极限可计算出所求极限值.【详解】由题意得.故答案为:.【点睛】本题考查数列极限的计算,熟悉一些常见数列的极限是解题的关键,考查计算能力,属于基础题.15、【解析】
直接利用数列的递推关系式和叠加法求出结果.【详解】因为,所以当时,.时也成立.所以数列的通项.【点睛】本题考查的知识要点:数列的通项公式的求法及应用,叠加法在数列中的应用,主要考察学生的运算能力和转换能力,属于基础题.16、【解析】
根据题意得到直线MP运动起来构成平面,可得到面,进而得到结果.【详解】取的中点O连接,,根据题意可得到直线MP是一条动直线,当点P变动时直线就构成了平面,因为MO均为线段的中点,故得到,四边形为平行四边形,面,故得到,又面,进而得到.故夹角为.故答案为.【点睛】这个题目考查的是异面直线的夹角的求法;常见方法有:将异面直线平移到同一平面内,转化为平面角的问题;或者证明线面垂直进而得到面面垂直,这种方法适用于异面直线垂直的时候.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)0.7【解析】
(1)从代号为、、、、的5个人中任选2人,利用列举法能求出所有可能的结果.(2)、、三人为男性,、两人为女性,利用列举法求出选出的2人中不全为男性包含的基本事件有7种,由此能求出选出的2人中不全为男性的概率.【详解】(1)从代号为、、、、的5个人中任选2人.所有可能的结果有10种,分别为:,,,,,,,,,.(2)、、三人为男性,、两人为女性,选出的2人中不全为男性包含的基本事件有7种,分别为:,,,,,,.选出的2人中不全为男性的概率.【点睛】本题考查概率的求法,考查古典概型、列举法等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.18、(1)证明见解析(2)证明见解析【解析】
(1)取的中点,连接,通过证明四边形为平行四边形,证得,由此证得平面.(2)通过证明,证得平面,由此证得平面,从而证得平面平面.【详解】(1)证明:取PC的中点H,连接FH则FH∥BC,FH,又ED∥BC,ED,∴ED∥FH,ED=FH,∴四边形EFHD为平行四边形,∴EF∥DH,又DH⊂平面PCD,EF⊄平面PCD,∴EF∥平面PCD;(2)证明:∵PE⊥平面ABCD,CD⊥AD,∴CD⊥AP(三垂线定理),又AP⊥PD,∴AP⊥平面PCD,又∵GF∥AP,∴GF⊥平面PCD,∴平面EFG⊥平面PCD.【点睛】本小题主要考查线面平行的证明,考查面面垂直的证明,考查空间想象能力和逻辑推理能力,属于中档题.19、(1);(2)(i)(ii)面积最大值为,直线的方程为.【解析】
(1)根据题意列出方程求解即可(2)联立直线与圆的方程,得出P、Q、H三点坐标,表示出QH直线方程,采用点到直线距离公式求解;利用圆的几何关系,表示出三角形的底和高,再结合函数最值问题进行求解【详解】(1)由及两点距离公式,有,化简整理得,.所以曲线C的方程为;(2)(i)设直线l的方程为;将直线l的方程与圆C的方程联立,消去y,得(,解得因此,,,所以直线QH的方程为.到直线QH的距离,当时.,所以,(ii)过O作于D,则D为QR中点,且由(i)知,,,又由,故的面积,由,有,所以,当且仅当时,等号成立,且此时由(i)有,即.综上,的面积最大值为的面积最大值为,且当面积最大时直线的方程为.【点睛】直线与圆的综合类题型常采用点到直线距离公式、圆内构造的直角三角形,将代数问题与几何问题进行有效结合,可大大降低解题难度.20、(1)(2)见解析【解析】
(1)由不等式对于一切实数恒成立等价于对于一切实数恒成立,利用二次函数的性质,即可求解,得到答案.(2)不等式化为,根据一元二次不等式的解法,分类讨论,即可求解.【详解】(1)由题意,不等式对于一切实数恒成立,等价于对于一切实数恒成立.当时,不等式可化为,不满足题意;当时,满足,即,解得.(2)不等式等价于.当时,不等式可化为,所以不等式的解集为;当时,不等式可化为,此时,所以不等式的解集为;当时,不等式可化为,①当时,,不等式的解集为;②当时,,不等式的解集为;③当时,,不等式的解集为.【点睛】本题主要考查了不等式的恒成立问题,以及含参数的一元二次不等式的解法,其中解答中熟记一元二次不等式的解法,以及一元二次方程的性质是解答的关键,着重考查了分类讨论思想,以及推理与运算能力,属于中档试题.21、(1)见解析;(2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024届山东省临沂市太平中学中考数学押题卷含解析
- 广东省东莞市虎门汇英校2024届中考二模数学试题含解析
- 2025年安全培训考试试题及参考答案(轻巧夺冠)
- 2025年新入职员工安全培训考试试题及参考答案【巩固】
- 2024-2025公司三级安全培训考试试题(5A)
- 2025各个班组安全培训考试试题附参考答案【轻巧夺冠】
- 25年公司、项目部、各个班组三级安全培训考试试题【B卷】
- 2025项目部管理人员安全培训考试试题及答案a4版
- 2024-2025新员工入职前安全培训考试试题及答案a4版
- 2024-2025企业安全管理人员安全培训考试试题及答案(必刷)
- 污水处理设施运维服务投标方案(技术方案)
- 《交通运输概论》 课件全套 第1-7章 绪论、公路运输系统-综合运输系统
- 大学生就业创业法律实务智慧树知到课后章节答案2023年下上海建桥学院
- 不确定的危机下做确定的业绩
- 七年级生物下册期中考试试卷和答案
- 老旧供热管网改造工程技术标投标方案
- 葫芦岛鹏翔生物科技(集团)有限公司年产农药系列产品3700吨、年产胡椒环2000吨建设项目环评报告
- 最新火电厂工作原理演示文稿
- 证据清单模板
- 婚前医学检查证明(含存根)
- GB/T 13288-1991涂装前钢材表面粗糙度等级的评定(比较样块法)
评论
0/150
提交评论