陕西省延安市2025届数学高一下期末质量检测模拟试题含解析_第1页
陕西省延安市2025届数学高一下期末质量检测模拟试题含解析_第2页
陕西省延安市2025届数学高一下期末质量检测模拟试题含解析_第3页
陕西省延安市2025届数学高一下期末质量检测模拟试题含解析_第4页
陕西省延安市2025届数学高一下期末质量检测模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

陕西省延安市2025届数学高一下期末质量检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设为数列的前项和,,则的值为()A. B. C. D.不确定2.已知向量,,若,则锐角α为()A.45° B.60° C.75° D.30°3.已知圆:关于直线对称的圆为圆:,则直线的方程为A. B. C. D.4.已知等差数列前n项的和为,,,则()A.25 B.26 C.27 D.285.如图:样本A和B分别取自两个不同的总体,他们的样本平均数分别为和,样本标准差分别为和,则()A.B.C.D.6.已知三条相交于一点的线段两两垂直且在同一平面内,在平面外、平面于,则垂足是的()A.内心 B.外心 C.重心 D.垂心7.在中,内角所对的边分别是.已知,,,则A. B. C. D.8.已知直线,与互相垂直,则的值是()A. B.或 C. D.或9.下列命题中正确的是()A.第一象限角必是锐角; B.相等的角终边必相同;C.终边相同的角相等; D.不相等的角其终边必不相同.10.《九章算术》中有如下问题:今有蒲生一日,长三尺,莞生一日,长1尺.蒲生日自半,莞生日自倍.问几何日而长等?意思是:今有蒲第一天长高3尺,莞第一天长高1尺,以后蒲每天长高前一天的一半,莞每天长高前一天的2倍.若蒲、莞长度相等,则所需时间为()(结果精确到0.1.参考数据:lg2=0.3010,lg3=0.2.)A.2.6天 B.2.2天 C.2.4天 D.2.8天二、填空题:本大题共6小题,每小题5分,共30分。11.某班委会由4名男生与3名女生组成,现从中选出2人担任正副班长,其中至少有1名女生当选的概率是______12.已知函数,(常数、),若当且仅当时,函数取得最大值1,则实数的数值为______.13.在梯形中,,,设,,则__________(用向量表示).14.等比数列中,若,,则______.15.已知数列是等比数列,若,,则公比________.16.已知直线l过点P(-2,5),且斜率为-,则直线l的方程为________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知圆C的方程是(x-1)2+(y-1)2=4,直线l的方程为y=x+m,求当m为何值时,(1)直线平分圆;(2)直线与圆相切.18.已知中,,,点D在AB上,,并且.(1)求BC的长度;(2)若点E为AB中点,求CE的长度.19.在中,内角A,B,C的对边分别是ɑ,b,c,已知,.(1)求角C;(2)求面积的最大值.20.在中,内角所对的边分别是.已知,,且.(Ⅰ)求角的大小;(Ⅱ)若,求面积的最大值.21.中,D是边BC上的点,满足,,.(1)求;(2)若,求BD的长.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

令,由求出的值,再令时,由得出,两式相减可推出数列是等比数列,求出该数列的公比,再利用等比数列求和公式可求出的值.【详解】当时,,得;当时,由得出,两式相减得,可得.所以,数列是以为首项,以为公比的等比数列,因此,.故选:C.【点睛】本题考查利用前项和求数列通项,同时也考查了等比数列求和,在递推公式中涉及与时,可利用公式求解出,也可以转化为来求解,考查推理能力与计算能力,属于中等题.2、D【解析】

根据向量的平行的坐标表示,列出等式,即可求出.【详解】因为,所以,又为锐角,因此,即,故选D.【点睛】本题主要考查向量平行的坐标表示.3、A【解析】

根据对称性,求得,求得圆的圆心坐标,再根据直线l为线段C1C2的垂直平分线,求得直线的斜率,即可求解,得到答案.【详解】由题意,圆的方程,可化为,根据对称性,可得:,解得:或(舍去,此时半径的平方小于0,不符合题意),此时C1(0,0),C2(-1,2),直线C1C2的斜率为:,由圆C1和圆C2关于直线l对称可知:直线l为线段C1C2的垂直平分线,所以,解得,直线l又经过线段C1C2的中点(,1),所以直线l的方程为:,化简得:,故选A【点睛】本题主要考查了圆与圆的位置关系的应用,其中解答中熟记两圆的位置关系,合理应用圆对称性是解答本题的关键,其中着重考查了推理与运算能力,属于基础题.4、C【解析】

根据等差数列的求和与通项性质求解即可.【详解】等差数列前n项的和为,故.故.故选:C【点睛】本题主要考查了等差数列通项与求和的性质运用,属于基础题.5、B【解析】

从图形中可以看出样本A的数据均不大于10,而样本B的数据均不小于10,A中数据波动程度较大,B中数据较稳定,由此得到结论.【详解】∵样本A的数据均不大于10,而样本B的数据均不小于10,,由图可知A中数据波动程度较大,B中数据较稳定,.故选B.6、D【解析】

根据题意,结合线线垂直推证线面垂直,以及根据线面垂直推证线线垂直,即可求解。【详解】连接BH,延长BH与AC相交于E,连接AH,延长AH交BC于D,作图如下:因为,故平面PBC,又平面PBC,故;因为平面ABC,平面ABC,故;又平面PAH,平面PAH故平面PAH,又平面PAH,故,即;同理可得:,又BE与AD交于点H,故H点为的垂心.故选:D.【点睛】本题考查线线垂直与线面垂直之间的相互转化,属综合中档题.7、B【解析】

由已知三边,利用余弦定理可得,结合,为锐角,可得,利用三角形内角和定理即可求的值.【详解】在中,,,,由余弦定理可得:,,故为锐角,可得,,故选.【点睛】本题主要考查利用余弦定理解三角形以及三角形内角和定理的应用.8、B【解析】

根据直线垂直公式得到答案.【详解】已知直线,与互相垂直或故答案选B【点睛】本题考查了直线垂直的关系,意在考查学生的计算能力.9、B【解析】

根据终边相同的角和象限角的定义,举反例或直接进行判断可得最后结果.【详解】是第一象限角,但不是锐角,故A错误;与终边相同,但他们不相等,故C错误;与不相等,但他们的终边相同,故D错误;因为角的始边在x轴的非负半轴上,则相等的角终边必相同,故B正确.故选:B【点睛】本题考查了终边相同的角和象限角的定义,利用定义举出反例进行判断是解决本题的关键.10、A【解析】

设蒲的长度组成等比数列{an},其a1=3,公比为,其前n项和为An.莞的长度组成等比数列{bn},其b1=1,公比为2,其前n项和为Bn.利用等比数列的前n项和公式及其对数的运算性质即可得出..【详解】设蒲的长度组成等比数列{an},其a1=3,公比为,其前n项和为An.莞的长度组成等比数列{bn},其b1=1,公比为2,其前n项和为Bn.则An,Bn,由题意可得:,化为:2n7,解得2n=3,2n=1(舍去).∴n12.3.∴估计2.3日蒲、莞长度相等,故选:A.【点睛】本题考查了等比数列的通项公式与求和公式在实际中的应用,考查了推理能力与计算能力,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】试题分析:∵从7人中选2人共有C72=21种选法,从4个男生中选2人共有C42=6种选法∴没有女生的概率是=,∴至少有1名女生当选的概率1-=.考点:本题主要考查古典概型及其概率计算公式.点评:在使用古典概型的概率公式时,应该注意:(1)要判断该概率模型是不是古典概型;(2)要找出随机事件A包含的基本事件的个数和试验中基本事件的总数.12、-1【解析】

先将函数转化成同名三角函数,再结合二次函数性质进行求解即可【详解】令,,对称轴为;当时,时函数值最大,,解得;当时,对称轴为,函数在时取到最大值,与题设矛盾;当时,时函数值最大,,解得;故的数值为:-1故答案为:-1【点睛】本题考查换元法在三角函数中的应用,分类讨论求解函数最值,属于中档题13、【解析】

根据向量减法运算得结果.【详解】利用向量的三角形法则,可得,,又,,则,.故答案为.【点睛】本题考查向量表示,考查基本化解能力14、【解析】

设的首项为,公比为,根据,列出方程组,求出和即可得解.【详解】设的首项为,公比为,则:,解之得,所以:.故答案为:.【点睛】本题考查等比数列中某项的求法,解题关键是根据题意列出方程组,需要注意的是为了简化运算不用直接求解,解出即可,属于基础题.15、【解析】

利用等比数列的通项公式即可得出.【详解】∵数列是等比数列,若,,则,解得,即.故答案为:【点睛】本题考查了等比数列的通项公式,考查了计算能力,属于基础题.16、3x+4y-14=0【解析】由y-5=-(x+2),得3x+4y-14=0.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)m=0;(2)m=±2.【解析】试题分析:(1)直线平分圆,即直线过圆心,将圆心坐标代入直线方程可得m值(2)根据圆心到直线距离等于半径列方程,解得m值试题解析:解:(1)∵直线平分圆,所以圆心在直线y=x+m上,即有m=0.(2)∵直线与圆相切,所以圆心到直线的距离等于半径,∴d==2,m=±2.即m=±2时,直线l与圆相切.点睛:判断直线与圆的位置关系的常见方法(1)几何法:利用d与r的关系.(2)代数法:联立方程之后利用Δ判断.(3)点与圆的位置关系法:若直线恒过定点且定点在圆内,可判断直线与圆相交.上述方法中最常用的是几何法,点与圆的位置关系法适用于动直线问题.18、(1);(2)【解析】

(1)根据所给条件,结合三角函数可先求得.再由即可求得,进而得的值.在中由余弦定理即可求得的值.(2)由(1)可知,而,且E为AB中点,可得,.在可由勾股定理求得,再在由勾股定理求得即可.【详解】(1)由,,可知,又,可得,所以.在中,由余弦定理可得,所以;(2)由(1)可知,,又点E为AB中点,可得,,在直角中,,在直角中,,所以.【点睛】本题考查了余弦定理在解三角形中的应用,线段关系及勾股定理求线段长的应用,属于基础题.19、(1);(2)【解析】

(1)利用正弦定理边化角可求得,由的范围可求得结果;(2)利用余弦定理和基本不等式可求得的最大值,代入三角形面积公式可求得结果.【详解】(1)由正弦定理得:,即又(2)由余弦定理得:(当且仅当时取等号),即面积的最大值为【点睛】本题考查解三角形的相关知识,涉及到正弦定理边化角的应用、余弦定理解三角形、基本不等式求积的最大值、三角形面积公式的应用;求解面积的最大值的关键是能够在余弦定理的基础上,利用基本不等式来求解两边之积的最大值.20、(Ⅰ)(Ⅱ)【解析】

(Ⅰ)先利用向量垂直的坐标表示,得到,再利用正弦定理以及两角和的正弦公式将,化为,进而得到,由此能求出.(Ⅱ)将两边平方,推导出,当且仅当,时取等号,由此求出面积的最大值.【详解】解析:(Ⅰ)由得,则得,即由于,得,又A为内角,因此.(Ⅱ)将两边平方,即所以,当且仅当,时取等号.此时,其最大值为.【点睛】本题主要考查数量积的坐标表示及运算、两角和的正弦公式应用、三角形面积公式的应用以

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论