2025届辽宁大连市普兰店区第二中学高一下数学期末统考试题含解析_第1页
2025届辽宁大连市普兰店区第二中学高一下数学期末统考试题含解析_第2页
2025届辽宁大连市普兰店区第二中学高一下数学期末统考试题含解析_第3页
2025届辽宁大连市普兰店区第二中学高一下数学期末统考试题含解析_第4页
2025届辽宁大连市普兰店区第二中学高一下数学期末统考试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届辽宁大连市普兰店区第二中学高一下数学期末统考试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若等差数列的前5项之和,且,则()A.12 B.13 C.14 D.152.已知等差数列中,若,则取最小值时的()A.9 B.8 C.7 D.63.某工厂一年中各月份的收入、支出情况的统计如图所示,下列说法中错误的是().A.收入最高值与收入最低值的比是B.结余最高的月份是月份C.与月份的收入的变化率与至月份的收入的变化率相同D.前个月的平均收入为万元4.设,若3是与的等比中项,则的最小值为().A. B. C. D.5.如图,长方体中,,,那么异面直线与所成角的余弦值是()A. B. C. D.6.已知向量,向量,则()A. B. C. D.7.若tan()=2,则sin2α=()A. B. C. D.8.直线x+2y﹣3=0与直线2x+ay﹣1=0垂直,则a的值为()A.﹣1 B.4 C.1 D.﹣49.已知三棱锥中,,,则三棱锥的外接球的表面积为()A. B.4 C. D.10.已知直线与直线平行,则实数m的值为()A.3 B.1 C.-3或1 D.-1或3二、填空题:本大题共6小题,每小题5分,共30分。11.已知与的夹角为,,,则________.12.若不等式对于任意都成立,则实数的取值范围是____________.13.若函数的反函数的图象过点,则________.14.已知等比数列的公比为,关于的不等式有下列说法:①当吋,不等式的解集②当吋,不等式的解集为③当>0吋,存在公比,使得不等式解集为④存在公比,使得不等式解集为R.上述说法正确的序号是_______.15.的最大值为______.16.中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体的所有棱长和为_______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知数列满足,.(1)若,求证:数列为等比数列.(2)若,求.18.如图所示,是一个矩形花坛,其中米,米.现将矩形花坛扩建成一个更大的矩形花坛,要求:在上,在上,对角线过点,且矩形的面积小于150平方米.(1)设长为米,矩形的面积为平方米,试用解析式将表示成的函数,并确定函数的定义域;(2)当的长度是多少时,矩形的面积最小?并求最小面积.19.已知数列为等差数列,是数列的前n项和,且,.(1)求数列的通项公式;(2)令,求数列的前n项和.20.如图,一辆汽车在一条水平的公路上向正西行驶,到A处时测得公路北侧远处一山顶D在西偏北的方向上,仰角为,行驶4km后到达B处,测得此山顶在西偏北的方向上.(1)求此山的高度(单位:km);(2)设汽车行驶过程中仰望山顶D的最大仰角为,求.21.设公差不为0的等差数列中,,且构成等比数列.(Ⅰ)求数列的通项公式;(Ⅱ)若数列的前项和满足:,求数列的前项和.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】试题分析:由题意得,,又,则,又,所以等差数列的公差为,所以.考点:等差数列的通项公式.2、C【解析】

是等差数列,先根据已知求出首项和公差,再表示出,由的最小值确定n。【详解】由题得,,解得,那么,当n=7时,取到最小值-49.故选:C【点睛】本题考查等差数列前n项和,是基础题。3、D【解析】由图可知,收入最高值为万元,收入最低值为万元,其比是,故项正确;结余最高为月份,为,故项正确;至月份的收入的变化率为至月份的收入的变化率相同,故项正确;前个月的平均收入为万元,故项错误.综上,故选.4、C【解析】

由3是与的等比中项,可得,再利用不等式知识可得的最小值.【详解】解:3是与的等比中项,,,=,故选C.【点睛】本题考查了指数式和对数式的互化,及均值不等式求最值的运用,考查了计算变通能力.5、A【解析】

可证得四边形为平行四边形,得到,将所求的异面直线所成角转化为;假设,根据角度关系可求得的三边长,利用余弦定理可求得余弦值.【详解】连接,四边形为平行四边形异面直线与所成角即为与所成角,即设,,,,在中,由余弦定理得:异面直线与所成角的余弦值为:本题正确选项:【点睛】本题考查异面直线所成角的求解问题,关键是能够通过平行关系将问题转化为相交直线所成角,在三角形中利用余弦定理求得余弦值.6、C【解析】

设,根据系数对应关系即可求解【详解】设,即,故选:C【点睛】本题考查向量共线的基本运算,属于基础题7、B【解析】

由两角差的正切得tan,化sin2α为tan的齐次式求解【详解】tan()=2,则则sin2α=故选:B【点睛】本题考查两角差的正切公式,考查二倍角公式及齐次式求值,意在考查公式的灵活运用,是基础题8、A【解析】

由两直线垂直的条件,列出方程即可求解,得到答案.【详解】由题意,直线与直线垂直,则满足,解得,故选:A.【点睛】本题主要考查了两直线位置关系的应用,其中解答中熟记两直线垂直的条件是解答的关键,着重考查了推理与运算能力,属于基础题.9、B【解析】

依据题中数据,利用勾股定理可判断出从而可得三棱锥各面都为直角三角形,进而可知外接圆的直径,即可求出三棱锥的外接球的表面积【详解】如图,因为,又,,从而可得三棱锥各面都为直角三角形,CD是三棱锥的外接球的直径,在中,,,即,,故选B.【点睛】本题主要考查学生空间想象以及数学建模能力,能够依据条件建立合适的模型是解题的关键.10、B【解析】

两直线平行应该满足,利用系数关系及可解得m.【详解】两直线平行,可得(舍去).选B.【点睛】两直线平行的一般式对应关系为:,若是已知斜率,则有,截距不相等.二、填空题:本大题共6小题,每小题5分,共30分。11、3【解析】

将平方再利用数量积公式求解即可.【详解】因为,故.化简得.因为,故.故答案为:3【点睛】本题主要考查了模长与数量积的综合运用,经常利用平方去处理.属于基础题.12、【解析】

利用换元法令(),将不等式左边构造成一次函数,根据一次函数的性质列不等式组,解不等式组求得的取值范围.【详解】令,,则.由已知得,不等式对于任意都成立.又令,则,即,解得.所以所求实数的取值范围是.故答案为:【点睛】本小题主要考查不等式恒成立问题的求解策略,考查三角函数的取值范围,考查一次函数的性质,考查化归与转化的数学思想方法,属于中档题.13、【解析】

由反函数的性质可得的图象过,将代入,即可得结果.【详解】的反函数的图象过点,的图象过,故答案为.【点睛】本题主要考查反函数的基本性质,意在考查对基础知识掌握的熟练程度,属于基础题.14、③【解析】

利用等比数列的通项公式,解不等式后可得结论.【详解】由题意,不等式变为,即,若,则,当或时解为,当或时,解为,时,解为;若,则,当或时解为,当或时,解为,时,不等式无解.对照A、B、C、D,只有C正确.故选C.【点睛】本题考查等比数列的通项公式,考查解一元二次不等式,难点是解一元二次不等式,注意分类讨论,本题中需对二次项系数分正负,然后以要对两根分大小,另外还有一个是相应的一元二次方程是否有实数解分类(本题已经有两解,不需要这个分类).15、3【解析】

由余弦型函数的值域可求得整个函数的值域,进而得到最大值.【详解】,即故答案为:【点睛】本题考查含余弦型函数的值域的求解问题,关键是明确在自变量无范围限制时,余弦型函数的值域为.16、【解析】

取半正多面体的截面正八边形,设半正多面体的棱长为,过分别作于,于,可知,,可求出半正多面体的棱长及所有棱长和.【详解】取半正多面体的截面正八边形,由正方体的棱长为1,可知,易知,设半正多面体的棱长为,过分别作于,于,则,,解得,故该半正多面体的所有棱长和为.【点睛】本题考查了空间几何体的结构,考查了空间想象能力与计算求解能力,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)答案见解析【解析】

(1)证明即可;(2)化简,讨论,和即可求解【详解】因为,所以,所以.又所以数列是以3为首项,9为公比的等比数列.(2)因为,所以,所以:当时,当时,.当时,.【点睛】本题考查等比数列的证明,极限的运算,注意分类讨论的应用,是中档题18、(1),;(2),.【解析】

(1)由可得,,∴.由,且,解得,∴函数的定义域为.(2)令,则,,当且仅当时,取最小值,故当的长度为米时,矩形花坛的面积最小,最小面积为96平方米.考点:1.分式不等式;2.均值不等式.19、(1)(2)【解析】

(1)由等差数列可得,求得,即可求得通项公式;(2)由(1),则利用裂项相消法求数列的和即可【详解】解:(1)因为数列是等差数列,且,,则,解得,所以(2)由(1),,所以【点睛】本题考查等差数列的通项公式,考查裂项相消法求数列的和20、(1)km.(2)【解析】

(1)设此山高,再根据三角形中三角函数的关系以及正弦定理求解即可.(2)由题意可知,当点C到公路距离最小时,仰望山顶D的仰角达到最大,再计算到直线的距离即可.【详解】解:(1)设此山高,则,在中,,,.根据正弦定理得,即,解得(km).(2)由题意可知,当点C到公路距离最小时,仰望山顶D的仰角达到最大,所以过C作,垂足为E,连接

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论