版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届湖北省钢城第四中学数学高一下期末学业质量监测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.中,若,则的形状是()A.等腰三角形 B.等边三角形C.锐角三角形 D.直角三角形2.在中,,是边上的一点,,若为锐角,的面积为20,则()A. B. C. D.3.若点共线,则的值为()A. B. C. D.4.过点P(0,2)作直线x+my﹣4=0的垂线,垂足为Q,则Q到直线x+2y﹣14=0的距离最小值为()A.0 B.2 C. D.25.在△ABC中,D是边BC的中点,则=A. B. C. D.6.已知、是圆:上的两个动点,,,若是线段的中点,则的值为()A. B. C. D.7.在锐角中ΔABC,角A,B所对的边长分别为a,b.若2asinA.π12B.π6C.π8.在中,角的对边分别是,若,且三边成等比数列,则的值为()A. B. C.1 D.29.如图,两个正方形和所在平面互相垂直,设、分别是和的中点,那么:①;②平面;③;④、异面.其中不正确的序号是()A.① B.② C.③ D.④10.已知,,则的最大值为()A.9 B.3 C.1 D.27二、填空题:本大题共6小题,每小题5分,共30分。11.已知平面向量,,满足:,且,则的最小值为____.12.已知,若数列满足,,则等于________13.已知数列是公差不为0的等差数列,,且成等比数列,则的前9项和_______.14.在△ABC中,若∠A=120°,AB=5,BC=7,则△ABC的面积S=_____.15.把二进制数1111(2)化为十进制数是______.16.若向量,,且,则实数______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.一盒中装有12个球,其中5个红球,4个黑球,2个白球,1个绿球.从中随机取出1球,求:(1)取出1球是红球或黑球的概率;(2)取出1球是红球或黑球或白球的概率.18.已知函数.(1)判断函数奇偶性;(2)讨论函数的单调性;(3)比较与的大小.19.如图,求阴影部分绕旋转一周所形成的几何体的表面积和体积.20.已知为平面内不共线的三点,表示的面积(1)若求;(2)若,,,证明:;(3)若,,,其中,且坐标原点恰好为的重心,判断是否为定值,若是,求出该定值;若不是,请说明理由.21.已知(1)求的值;(2)求的最小值以及取得最小值时的值
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
根据正弦定理,得到,进而得到,再由两角和的正弦公式,即可得出结果.【详解】因为,所以,所以,即,所以,又因此,所以,即三角形为直角三角形.故选D【点睛】本题主要考查三角形形状的判断,熟记正弦定理即可,属于常考题型.2、C【解析】
先利用面积公式计算出,计算出,运用余弦定理计算出,利用正弦定理计算出,在中运用正弦定理求解出.【详解】解:由的面积公式可知,,可得,为锐角,可得在中,,即有,由可得,由可知.故选.【点睛】本题考查正弦定理与余弦定理在解三角形中的应用,考查方程思想,属于中档题.3、A【解析】
通过三点共线转化为向量共线,即可得到答案.【详解】由题意,可知,又,点共线,则,即,所以,故选A.【点睛】本题主要考查三点共线的条件,难度较小.4、C【解析】
由直线过定点,得到的中点,由垂直直线,得到点在以点为圆心,以为半径的圆,求得圆的方程,由此求出到直线的距离最小值,得到答案.【详解】由题意,过点作直线的垂线,垂足为,直线过定点,由中点公式可得,的中点,由垂直直线,所以点点在以点为圆心,以为半径的圆,其圆的方程为,则圆心到直线的距离为所以点到直线的距离最小值;,故选:C.【点睛】本题主要考查了圆的标准方程,直线与圆的位置关系的应用,同时涉及到点到直线的距离公式的应用,着重考查了推理与计算能力,以及分析问题和解答问题的能力,试题综合性强,属于中档试题.5、C【解析】分析:利用平面向量的减法法则及共线向量的性质求解即可.详解:因为是的中点,所以,所以,故选C.点睛:本题主要考查共线向量的性质,平面向量的减法法则,属于简单题.6、A【解析】由题意得,所以,选A.7、D【解析】试题分析:∵2a考点:正弦定理解三角形8、C【解析】
先利用正弦定理边角互化思想得出,再利余弦定理以及条件得出可得出是等边三角形,于此可得出的值.【详解】,由正弦定理边角互化的思想得,,,,则.、、成等比数列,则,由余弦定理得,化简得,,则是等边三角形,,故选C.【点睛】本题考查正弦定理边角互化思想的应用,考查余弦定理的应用,解题时应根据等式结构以及已知元素类型合理选择正弦定理与余弦定理求解,考查计算能力,属于中等题.9、D【解析】
取的中点,连接,,连接,,由线面垂直的判定和性质可判断①;由三角形的中位线定理,以及线面平行的判定定理可判断②③④.【详解】解:取的中点,连接,,连接,,正方形和所在平面互相垂直,、分别是和的中点,可得,,平面,可得,故①正确;由为的中位线,可得,且平面,可得平面,故②③正确,④错误.故选:D.【点睛】本题主要考查空间线线和线面的位置关系,考查转化思想和数形结合思想,属于基础题.10、B【解析】
由已知,可利用柯西不等式,构造柯西不等式,即可求解.【详解】由已知,可知,,利用柯西不等式,可构造得,即,所以的最大值为3,故选B.【点睛】本题主要考查了柯西不等式的应用,其中解答中熟记柯西不等式,合理构造柯西不等式求解是解答的关键,着重考查了推理与运算能力,属于中档试题.二、填空题:本大题共6小题,每小题5分,共30分。11、-1【解析】
,,,由经过向量运算得,知点在以为圆心,1为半径的圆上,这样,只要最小,就可化简.【详解】如图,,则,设是中点,则,∵,∴,即,,记,则点在以为圆心,1为半径的圆上,记,,注意到,因此当与反向时,最小,∴.∴最小值为-1.故答案为-1.【点睛】本题考查平面向量的数量积,解题关键是由已知得出点轨迹(让表示的有向线段的起点都是原点)是圆,然后分析出只有最小时,才可能最小.从而得到解题方法.12、【解析】
根据首项、递推公式,结合函数的解析式,求出的值,可以发现数列是周期数列,求出周期,利用数列的周期性可以求出的值.【详解】,所以数列是以5为周期的数列,因为20能被5整除,所以.【点睛】本题考查了数列的周期性,考查了数学运算能力.13、117【解析】
由成等比数列求出公差,由前项公式求和.【详解】设数列是公差为,则,由成等比数列得,解得,∴.故答案为:117.【点睛】本题考查等差数列的前项和公式,考查等比数列的性质.解题关键是求出数列的公差.14、【解析】
用余弦定理求出边的值,再用面积公式求面积即可.【详解】解:据题设条件由余弦定理得,即,即解得,故的面积,故答案为:.【点睛】本题主要考查余弦定理解三角形,考查三角形的面积公式,属于基础题.15、.【解析】
由二进制数的定义可将化为十进制数.【详解】由二进制数的定义可得,故答案为:.【点睛】本题考查二进制数化十进制数,考查二进制数的定义,考查计算能力,属于基础题.16、【解析】
根据,两个向量平行的条件是建立等式,解之即可.【详解】解:因为,,且所以解得故答案为:【点睛】本题主要考查两个向量坐标形式的平行的充要条件,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)取出球为红球或黑球的概率为(2)取出球为红球或黑球或白球的概率为【解析】试题分析:(1)由题意知本题是一个古典概型,试验包含的基本事件是从12个球中任取一球,满足条件的事件是取出的球是红球或黑球,根据古典概型和互斥事件的概率公式得到结果;(2)由题意知本题是一个古典概型,试验包含的基本事件是从12个球中任取一球,满足条件的事件是取出的一球是红球或黑球或白球,根据古典概型公式得到结果试题解析:(1)由题意知本题是一个古典概型,试验包含的基本事件是从12个球中任取一球共有12种结果;满足条件的事件是取出的球是红球或黑球共有9种结果,∴概率为.(2)由题意知本题是一个古典概型,试验包含的基本事件是从12个球中任取一球共有12种结果;满足条件的事件是取出的一球是红球或黑球或白球共有11种结果,∴概率为.即取出的1球是红球或黑球的概率为;取出的1球是红球或黑球或白球的概率为.考点:等可能事件的概率18、(1)是偶函数(2)见解析(3)【解析】
(1)由奇偶函数的定义判断;(2)由单调性的定义证明;(3)由于函数为偶函数,因此只要比较与的大小,因此先确定与的大小,这就得到分类标准.【详解】(1)是偶函数(2)当时,是增函数;当时,是减函数;先证明当时,是增函数证明:任取,且,则,且,,即:当时,是增函数∵是偶函数,∴当时,是减函数.(3)要比较与的大小,∵是偶函数,∴只要比较与大小即可.当时,即时,∵当时,是增函数,∴当时,即当时,∵当时,是增函数,∴【点睛】本题考查函数的奇偶性与单调性,掌握奇偶性与单调性的定义是解题基础.19、,【解析】
由图形知旋转后的几何体是一个圆台,从上面挖去一个半球后剩余部分,根据图形中的数据可求出其表面积和体积.【详解】由题意知,所求旋转体的表面积由三部分组成:圆台下底面、侧面和一个半球面,而半球面的表面积,圆台的底面积,圆台的侧面积,所以所求几何体的表面积;圆台的体积,半球的体积,所以,旋转体的体积为,故得解.【点睛】本题考查组合体的表面积、体积,还考查了空间想象能力,能想象出旋转后的旋转体的构成是本题的关键,属于中档题.20、(1);(2)详见解析;(3)是定值,值为,理由见解析.【解析】
(1)已知三点坐标,则可以求出三边长度及对应向量,由向量数量积公式可以求出夹角余弦值,从而算出正弦值,利用面积公式完成作答;(2)和(1)的方法一样,唯独不同在于(1)是具体值,而(2)中是参数,我们可以把参数当做整体(视为已知)能处理;(3)由恰好为的正心可以获取,而可以借助(2)的公式直接运用,本题也就完成作答.【详解】(1)因为,所以,,所以因为,所以,所以(2)因为,所以所以因为所以所以所以;(3)因为为的重心,所以由(1)可知又因为为的重心,所以,平方相加得:,即,所以所以,所以是定值,值为【点睛】已知三角形三点,去探究三角形面积问题,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度影视摄影棚投资居间合作协议3篇
- 2024年中国高安全节能型浸漆干燥箱市场调查研究报告
- 2024年独家品牌合作合同6篇
- 2025年度建筑抹灰工程劳务承揽合同范本3篇
- 2024年抵押房屋抵押权登记与转移协议3篇
- 2025年度新能源产业项目融资居间合作协议212946篇
- 二零二五年度包雪项目施工监理合同2篇
- 2024年中国金属眼镜框架市场调查研究报告
- 2024年矿石开采权转让合同3篇
- 2024年版:工程分包合同及施工说明
- ASTM-A269-A269M无缝和焊接奥氏体不锈钢管
- 中、高级钳工训练图纸
- 2024-2030年中国车载动态称重行业投融资规模与发展态势展望研究报告
- 乒乓球教案完整版本
- 2024年重庆公交车从业资格证考试题库
- 银行解押合同范本
- 2024-2030年中国纹身针行业市场发展趋势与前景展望战略分析报告
- 部编版道德与法治九年级上册每课教学反思
- 2024云南保山电力股份限公司招聘(100人)(高频重点提升专题训练)共500题附带答案详解
- 人教版(2024)七年级上册英语 Unit 1 You and Me 语法知识点复习提纲与学情评估测试卷汇编(含答案)
- 六年级期末家长会课件下载
评论
0/150
提交评论