




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南省非凡吉创联盟2025届高一数学第二学期期末统考模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若,则下列结论正确的是()A.若,则 B.若,则C.若,则 D.若,则2.若关于的方程,当时总有4个解,则可以是()A. B. C. D.3.已知角的终边过点,则()A. B. C. D.4.定义运算:.若不等式的解集是空集,则实数的取值范围是()A. B.C. D.5.若角的终边经过点,则()A. B. C. D.6.各项不为零的等差数列中,,数列是等比数列,且,则()A.4 B.8 C.16 D.647.如图,在正四棱锥中,,侧面积为,则它的体积为()A.4 B.8 C. D.8.已知向量,若,则()A.1 B. C.2 D.39.已知直线,若,则的值为()A.8 B.2 C. D.-210.函数的大致图象是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.己知数列满足就:,,若,写出所有可能的取值为______.12.已知x,y满足,则的最大值为________.13.如图所示,正方体的棱长为3,以其所有面的中心为顶点的多面体的体积为_____.14.黄金分割比是指将整体一分为二,较大部分与整体部分的比值等于较小部分与较大部分的比值,其比值为,约为0.618,这一数值也可以近似地用表示,则_____.15.已知,函数的最小值为__________.16.已知函数,它的值域是__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知△ABC内角A,B,C的对边分别是a,b,c,且.(Ⅰ)求A;(Ⅱ)若,求△ABC面积的最大值.18.已知等差数列的前n项和为,且,.(1)求的通项公式;(2)若,且,,成等比数列,求k的值.19.已知函数的部分图象如图所示.(1)求函数的解析式,并求出的单调递增区间;(2)若,求的值20.如果一个数列从第2项起,每一项与它前一项的差都大于2,则称这个数列为“阿当数列”.(1)若数列为“阿当数列”,且,,,求实数的取值范围;(2)是否存在首项为1的等差数列为“阿当数列”,且其前项和满足?若存在,请求出的通项公式;若不存在,请说明理由.(3)已知等比数列的每一项均为正整数,且为“阿当数列”,,,当数列不是“阿当数列”时,试判断数列是否为“阿当数列”,并说明理由.21.在凸四边形中,.(1)若,,,求的大小.(2)若,且,求四边形的面积.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
根据不等式的基本性质逐一判断可得答案.【详解】解:A.当时,不成立,故A不正确;B.取,,则结论不成立,故B不正确;C.当时,结论不成立,故C不正确;D.若,则,故D正确.故选:D.【点睛】本题主要考查不等式的基本性质,属于基础题.2、D【解析】
根据函数的解析式,写出与的解析式,再判断对应方程在时解的个数.【详解】对,,,;方程,当时有4个解,当时有3个解,当时有2个解,不符合;对,,,;方程,当时有2个解,当时有3个解,当时有4个解,不符合;对,,,;方程,当时有4个解,当时有3个解,当时有2个解,不符合;对,,,;方程,当时恒有4个解,符合题意.【点睛】本题考查了函数与方程的应用问题,考查数形结合思想的运用,对综合能力的要求较高.3、D【解析】
首先根据三角函数的定义,求得,之后应用三角函数的诱导公式,化简求得结果.【详解】由已知得,则.故选D【点睛】该题考查的是有关三角函数的化简求值问题,涉及到的知识点有三角函数的定义,诱导公式,属于简单题目.4、B【解析】
根据定义可得的解集是空集,即恒成立,再对分类讨论可得结果.【详解】由题意得的解集是空集,即恒成立.当时,不等式即为,不等式恒成立;当时,若不等式恒成立,则即解得.综上可知:.故选:B【点睛】本题考查了二次不等式的恒成立问题,考查了分类讨论思想,属于基础题.5、B【解析】
根据任意角的三角函数的定义,可以直接求到本题答案.【详解】因为点在角的终边上,所以.故选:B【点睛】本题主要考查利用任意角的三角函数的定义求值.6、D【解析】
根据等差数列性质可求得,再利用等比数列性质求得结果.【详解】由等差数列性质可得:又各项不为零,即由等比数列性质可得:本题正确选项:【点睛】本题考查等差数列、等比数列性质的应用,属于基础题.7、A【解析】
连交于,连,根据正四棱锥的定义可得平面,取中点,连,则由侧面积和底面边长,求出侧面等腰三角形的高,在中,求出,即可求解.【详解】连交于,连,取中点,连因为正四棱锥,则平面,,侧面积,在中,,.故选:A.【点睛】本题考查正四棱锥结构特征、体积和表面积,属于基础题.8、B【解析】
可求出,根据即可得出,进行数量积的坐标运算即可求出x.【详解】;∵;∴;解得.故选B.【点睛】本题考查向量垂直的充要条件,向量坐标的减法和数量积运算,属于基础题.9、D【解析】
根据两条直线垂直,列方程求解即可.【详解】由题:直线相互垂直,所以,解得:.故选:D【点睛】此题考查根据两条直线垂直,求参数的取值,关键在于熟练掌握垂直关系的表达方式,列方程求解.10、C【解析】
去掉绝对值将函数化为分段函数的形式后可得其图象的大体形状.【详解】由题意得,所以其图象的大体形状如选项C所示.故选C.【点睛】解答本题的关键是去掉函数中的绝对值,将函数化为基本函数后再求解,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】(1)若为偶数,则为偶,故①当仍为偶数时,故②当为奇数时,故得m=4。(2)若为奇数,则为偶数,故必为偶数,所以=1可得m=512、6【解析】
作出不等式组所表示的平面区域,结合图象确定目标函数的最优解,即可得到答案.【详解】由题意,作出不等式组所表示的平面区域,如图所示,因为目标函数,可化为直线,当直线过点A时,此时目标函数在轴上的截距最大,此时目标函数取得最大值,又由,解得,所以目标函数的最大值为.故答案为:6.【点睛】本题主要考查简单线性规划求解目标函数的最值问题.其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力,属于基础题.13、【解析】
该多面体为正八面体,将其转化为两个正四棱锥,通过计算两个正四棱锥的体积计算出正八面体的体积.【详解】以正方体所有面的中心为顶点的多面体为正八面体,也可以看作是两个正四棱锥的组合体,每一个正四棱锥的侧棱长与底面边长均为.则其中一个正四棱锥的高为h.∴该多面体的体积V.故答案为:【点睛】本小题主要考查正八面体、正四棱锥体积的计算,属于基础题.14、【解析】
代入分式利用同角三角函数的平方关系、二倍角公式及三角函数诱导公式化简即可.【详解】.故答案为:2【点睛】本题考查同角三角函数的平方关系、二倍角公式及三角函数诱导公式,属于基础题.15、5【解析】
变形后利用基本不等式可得最小值.【详解】∵,∴4x-5>0,∴当且仅当时,取等号,即时,有最小值5【点睛】本题考查利用基本不等式求最值,凑出可利用基本不等式的形式是解决问题的关键,使用基本不等式时要注意“一正二定三相等”的法则.16、【解析】
由反余弦函数的值域可求出函数的值域.【详解】,,因此,函数的值域为.故答案为:.【点睛】本题考查反三角函数值域的求解,解题的关键就是依据反余弦函数的值域进行计算,考查计算能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ)(Ⅱ)【解析】
(Ⅰ)利用正弦定理,三角函数恒等变换,可得,结合范围,可求的值.(Ⅱ)方法1:由余弦定理,基本不等式可得,利用三角形的面积公式即可求解;方法2:由正弦定理可得,,并将其代入可得,然后再化简,根据正弦函数的图象和性质即可求得面积的最大值.【详解】解:(I)因为,由正弦定理可得:,所以所以,即,,所以,可得:,所以,所以,可得:(II)方法1:由余弦定理得:,得,所以当且仅当时取等号,所以△ABC面积的最大值为方法2:因为,所以,,所以,所以,当且仅当,即,当时取等号.所以△ABC面积的最大值为.【点睛】本题主要考查了正弦定理,三角函数恒等变换的应用,余弦定理,基本不等式,三角形的面积公式,正弦函数的图象和性质在解三角形中的综合应用,考查了计算能力和转化思想,属于中档题.18、(1);(2)4.【解析】
(1)设等差数列的公差为d,根据等差数列的通项公式,列出方程组,即可求解.(2)由(1),求得,再根据,,成等比数列,得到关于的方程,即可求解.【详解】(1)设等差数列的公差为d,由题意可得:,解得.所以数列的通项公式为.(2)由知,因为,,成等比数列,所以,即,解得.【点睛】本题主要考查了等差数列的通项公式,以及前n项和公式的应用,其中解答中熟记等差数列的通项公式和前n项和公式,列出方程准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.19、(1);递增区间为;(2)【解析】
(1)由图可知其函数的周期满足,从而求得,进而求得,再代入点的坐标可得值,从而求得解析式;解不等式,可得函数的单调增区间;(2)由题意可得,结合,得到,利用平方关系,求得,之后利用差角余弦公式求得结果.【详解】(1)设函数的周期为,由图可知,∴,即,∵,∴,∴,上式中代入,有,得,,即,,又∵,∴,∴,令,解得,即的递增区间为;(2),又,∴,∴;∴.【点睛】该题考查的是有关三角函数的问题,涉及到的知识点有根据图象确定函数解析式,求正弦型函数的单调区间,同角三角函数关系式,利用整体角思维,结合差角正弦公式求三角函数值,属于简单题目.20、(1);(2)不存在,理由见详解;(3)见详解.【解析】
(1)根据题意,得到,求解即可得出结果;(2)先假设存在等差数列为“阿当数列”,设公差为,则,根据等差数列求和公式,结合题中条件,得到,即对任意都成立,判断出,推出矛盾,即可得出结果;(3)设等比数列的公比为,根据为“阿当数列”,推出在数列中,为最小项;在数列中,为最小项;得到,,再由数列每一项均为正整数,得到,或,;分别讨论,和,两种情况,结合数列的增减性,即可得出结果.【详解】(1)由题意可得:,,即,解得或;所以实数的取值范围是;(2)假设存在等差数列为“阿当数列”,设公差为,则,由可得:,又,所以对任意都成立,即对任意都成立,因为,且,所以,与矛盾,因此,不存在等差数列为“阿当数列”;(3)设等比数列的公比为,则,且每一项均为正整数,因为为“阿当数列”,所以,所以,;因为,即在数列中,为最小项;同理,在数列中,为最小项;由为“阿当数列”,只需,即,又因为数列不是“阿当数列”,所以,即,由数列每一项均为正整数,可得:,所以,或,;当,时,,则,令,则,所以,即数列为递增数列,所以,因为,所以对任意,都有,即数列是“阿当数列”;当,时,,则,显然数列是递减数列,,故数列不是“阿当数列”;综上,当时,数列是“阿当数列”;当时,数列不是“阿当数列”.【点睛】本题主要考查数列的综合,熟记等差数列与等比数列的通项公式与求和公式,以及数列的性质即可,属于常考题型.21、(1);(2)【解析】
(1)在中利用余弦定理可求得,从而可知,求得;在中利用正弦定理求得结果;(2)在中利用余弦定理和可表示出;
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 心梗急救措施
- 2025西安石油大学辅导员考试试题及答案
- 2025福建幼儿师范高等专科学校辅导员考试试题及答案
- 睡眠与疾病的关联机制
- 幼儿园世界卫生日主题教育活动
- 语言活动:兔胖胖减肥记
- 内蒙古星盛运营管理有限公司招聘笔试题库2025
- 绍兴滨耀粮油综合市场有限公司招聘笔试题库2025
- 旅游管理专业考试试卷及答案2025年
- 2025年艺术史基础知识与鉴赏能力考试试题及答案
- 【9化 二模】河北邢台邯郸2025年5月中考二模九年级化学试卷
- 江苏省南京师范大附属中学2025年八下数学期末监测试题含解析
- 2025-2030年中国夜视摄像机行业市场现状供需分析及投资评估规划分析研究报告
- 2025年中考英语高频核心词汇背记手册
- 危大工程巡视检查记录表 (样表)附危大工程安全监管及检查要点
- 四川省2025届高三第二次联合测评-生物试卷+答案
- 企业消防管理安全制度
- 2024年江苏省淮安市中考英语真题(原卷版)
- 2025年中国桦木工艺胶合板市场调查研究报告
- 广西南宁市新民中学2025届七下生物期末监测试题含解析
- 广东省广州市黄埔区2021-2022学年七年级下学期期末英语试题(含答案)
评论
0/150
提交评论