版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届上海市徐汇、松江、金山区数学高一下期末学业质量监测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设等差数列,则等于()A.120 B.60 C.54 D.1082.已知等比数列的前n项和为,若,,,则()A. B. C. D.3.已知等差数列中,,,则的值为()A.51 B.34 C.64 D.5124.在中,a、b分别为内角A、B的对边,如果,,,则()A. B. C. D.5.函数的最小正周期为,则的图象的一条对称轴方程是()A. B. C. D.6.已知为等差数列,为其前项和.若,则()A. B. C. D.7.()A.4 B. C.1 D.28.设,则()A.3 B.2 C.1 D.09.设,且,则下列各不等式中恒成立的是()A. B. C. D.10.已知是第一象限角,那么是()A.第一象限角 B.第二象限角C.第一或第二象限角 D.第一或第三象限角二、填空题:本大题共6小题,每小题5分,共30分。11.已知与的夹角为,,,则________.12.已知球的一个内接四面体中,,过球心,若该四面体的体积为,且,则球的表面积的最小值为_________.13.若锐角满足则______.14.在中,角所对的边分别为,,则____15.空间两点,间的距离为_____.16.已知,,,则的最小值为________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知数列的前项和,且满足:,.(1)求数列的通项公式;(2)若,求数列的前项和.18.已知:(,为常数).(1)若,求的最小正周期;(2)若在,上最大值与最小值之和为3,求的值.19.已知为等边角形,.点满足,,.设.试用向量和表示;若,求的值.20.已知向量,.(1)若,在集合中取值,求满足的概率;(2)若,在区间内取值,求满足的概率.21.已知数列的前项和为,满足,数列满足.(1)求数列、的通项公式;(2),求数列的前项和;(3)对任意的正整数,是否存在正整数,使得?若存在,请求出的所有值;若不存在,请说明理由.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
题干中只有一个等式,要求前9项的和,可利用等差数列的性质解决。【详解】,选C.【点睛】题干中只有一个等式,要求前9项的和,可利用等差数列的性质解决。也可将等式全部化为的表达式,整体代换计算出2、D【解析】
根据等比数列前n项和的性质可知、、成等比数列,即可得关于的等式,化简即可得解.【详解】等比数列的前n项和为,若,,根据等比数列前n项和性质可知,、、满足:化简可得故选:D【点睛】本题考查了等比数列前n项和的性质及简单应用,属于基础题.3、A【解析】
根据等差数列性质;若,则即可。【详解】因为为等差数列,所以,,所以选择A【点睛】本题主要考查了等差数列比较重要的一个性质;在等差数列中若,则,属于基础题。4、A【解析】
先求出再利用正弦定理求解即可.【详解】,,,由正弦定理可得,解得,故选:A.【点睛】本题注意考查正弦定理的应用,属于中档题.正弦定理主要有三种应用:求边和角、边角互化、外接圆半径.5、B【解析】
根据最小正周期为求解与解析式,再求解的对称轴判断即可.【详解】因为最小正周期为,故.故,对称轴方程为,解得.当时,.故选:B【点睛】本题主要考查了三角函数最小正周期的应用以及对称轴的计算.属于基础题.6、D【解析】试题分析:设等差数列的公差为,由题意得,解得,所以,故答案为D.考点:1、数列的通项公式;2、数列的前项和.7、A【解析】
分别利用和差公式计算,相加得答案.【详解】故答案为A【点睛】本题考查了正切的和差公式,意在考查学生的计算能力.8、B【解析】
先求内层函数,将所求值代入分段函数再次求解即可【详解】,则故选:B【点睛】本题考查分段函数具体函数值的求法,属于基础题9、D【解析】
根据不等式的性质,逐项检验,即可判断结果.【详解】对于选项A,若,显然不成立;对于选项B,若,显然不成立;对于选项C,若,显然不成立;对于选项D,因为,所以,故正确.故选:D.【点睛】本题考查了不等式的性质,属于基础题.10、D【解析】
根据象限角写出的取值范围,讨论即可知在第一或第三象限角【详解】依题意得,则,当时,是第一象限角当时,是第三象限角【点睛】本题主要考查象限角,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、3【解析】
将平方再利用数量积公式求解即可.【详解】因为,故.化简得.因为,故.故答案为:3【点睛】本题主要考查了模长与数量积的综合运用,经常利用平方去处理.属于基础题.12、【解析】
求出面积的最大值,结合棱锥的体积可得到平面距离的最小值,进一步求得球的半径的最小值得答案.【详解】解:在中,由,且,
得,得.
当且仅当时,有最大值1.
过球心,且四面体的体积为1,
∴三棱锥的体积为.
则到平面的距离为.
此时的外接圆的半径为,则球的半径的最小值为,
∴球O的表面积的最小值为.
故答案为:.【点睛】本题考查多面体外接球表面积最值的求法,考查逻辑思维能力与推理运算能力,考查空间想象能力,是中档题.13、【解析】
由已知利用同角三角函数基本关系式可求,的值,利用两角差的余弦公式即可计算得解.【详解】、为锐角,,,,,,.故答案为:.【点睛】本题主要考查了同角三角函数基本关系式,两角差的余弦函数公式在三角函数化简求值中的应用,属于基础题.14、【解析】
利用正弦定理将边角关系式中的边都化成角,再结合两角和差公式进行整理,从而得到.【详解】由正弦定理可得:即:本题正确结果:【点睛】本题考查李用正弦定理进行边角关系式的化简问题,属于常规题.15、【解析】
根据空间中两点间的距离公式即可得到答案【详解】由空间中两点间的距离公式可得;;故距离为3【点睛】本题考查空间中两点间的距离公式,属于基础题。16、1【解析】
由题意整体代入可得,由基本不等式可得.【详解】由,,,则.当且仅当=,即a=3且b=时,取得最小值1.故答案为:1.【点睛】本题考查基本不等式求最值,整体法并凑出可用基本不等式的形式是解决问题的关键,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】试题分析:(1)当时,可求出,当时,利用可求出是以2为首项,2为公比的等比数列,故而可求出其通项公式;(2)由裂项相消可求出其前项和.试题解析:(1)依题意:当时,有:,又,故,由①当时,有②,①-②得:化简得:,∴是以2为首项,2为公比的等比数列,∴.(2)由(1)得:,∴∴18、(1);(2)1【解析】
(1)利用二倍角和辅助角公式化简,即可求出最小正周期;(2)根据在,上,求解内层函数范围,即可求解最值,由最大值与最小值之和为3,求的值.【详解】解:,(1)的最小正周期;(2),,当时,即,取得最小值为,当时,即,取得最大值为,最大值与最小值之和为3,,,故的值为1.【点睛】本题主要考查三角函数的性质和图象的应用,属于基础题.19、(1);;(2).【解析】
(1)根据向量线性运算法则可直接求得结果;(2)根据(1)的结论将已知等式化为;根据等边三角形边长和夹角可将等式变为关于的方程,解方程求得结果.【详解】(1)(2)为等边三角形且,即:,解得:【点睛】本题考查平面向量线性运算、数量积运算的相关知识;关键是能够将等式转化为已知模长和夹角的向量的数量积运算的形式,根据向量数量积的定义求得结果.20、(1)(2)【解析】
(1)首先求出包含的基本事件个数,由,由向量的坐标运算可得,列出满足条件的基本事件个数,根据古典概型概率计算公式即可求解.(2)根据题意全部基本事件的结果为,满足的基本事件的结果为,利用几何概型概率计算公式即可求解.【详解】(1),的所有取值共有个基本事件.由,得,满足包含的基本事件为,,,,,共种情形,故.(2)若,在上取值,则全部基本事件的结果为,满足的基本事件的结果为.画出图形如图,正方形的面积为,阴影部分的面积为,故满足的概率为.【点睛】本题考查了古典概型概率计算公式、几何概型概率计算公式,属于基础题.21、(1),;(2)见解析;(3)存在,.【解析】
(1)利用可得,从而可得为等比数列,故可得其通项公式.用累加法可求的通项.(2)利用分组求和法可求,注意就的奇偶性分类讨论.(3)根据的通项可得,故考虑的解可得满足条件的的值.【详解】(1)在数列中,当时,.当时,由得,因为,故,所以数列是以为首项,为公比的等比数列即.在数列中,当时,有,由累加法得,,.当时,也符合上式,所以.(2).当为偶数时,=;当为奇数时,=.(3)对任意的正整数,有,假设存在正整数,使得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025届山东省莒县第一中学高考冲刺模拟英语试题含解析
- 河北省唐山市玉田县高级中学2025届高三下第一次测试英语试题含解析
- 云南省江川一中2025届高考考前提分语文仿真卷含解析
- 云南省屏边县第一中学2025届高三3月份模拟考试数学试题含解析
- 北京市文江中学2025届高考英语倒计时模拟卷含解析
- 辽宁省丹东市凤城市一中2025届高三第二次调研英语试卷含解析
- 2025届广东省河源市高三第三次测评语文试卷含解析
- 2025届河北省唐山市玉田县高考考前提分数学仿真卷含解析
- 2025届云南省普洱市高三第二次联考数学试卷含解析
- 内蒙古包头市百灵庙中学2025届高三二诊模拟考试语文试卷含解析
- 四川省绵阳市三台县2024-2025学年高二上学期期中考试历史试题 含解析
- 《司法鉴定工作实务》课件
- 二年级上册数学教案-第七单元认识时间(7课时) 人教新课标
- 2024-2030年中国海砂淡化开采产业未来发展趋势及投资策略分析报告
- 国家自然科学基金申请书模板三篇
- 2024年防汛物资购销合同范本
- DB14-T 1811-2019 旅游景区民俗燃香基本要求
- 丝绸之路的开通与经营西域
- 2024-2025学年初中生物学七年级下册(2024)北师大版(2024)教学设计合集
- 期中测试卷(1-5单元)(试题)-2024-2025学年三年级上册数学人教版
- 24.1.3 弧、弦、圆心角 人教版数学九年级上册教案
评论
0/150
提交评论