![2025届日喀则市重点中学数学高一下期末联考试题含解析_第1页](http://file4.renrendoc.com/view12/M02/33/33/wKhkGWZ4ShuACa9cAAGhXzyVjXs934.jpg)
![2025届日喀则市重点中学数学高一下期末联考试题含解析_第2页](http://file4.renrendoc.com/view12/M02/33/33/wKhkGWZ4ShuACa9cAAGhXzyVjXs9342.jpg)
![2025届日喀则市重点中学数学高一下期末联考试题含解析_第3页](http://file4.renrendoc.com/view12/M02/33/33/wKhkGWZ4ShuACa9cAAGhXzyVjXs9343.jpg)
![2025届日喀则市重点中学数学高一下期末联考试题含解析_第4页](http://file4.renrendoc.com/view12/M02/33/33/wKhkGWZ4ShuACa9cAAGhXzyVjXs9344.jpg)
![2025届日喀则市重点中学数学高一下期末联考试题含解析_第5页](http://file4.renrendoc.com/view12/M02/33/33/wKhkGWZ4ShuACa9cAAGhXzyVjXs9345.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届日喀则市重点中学数学高一下期末联考试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.阅读如图所示的程序,若运该程序输出的值为100,则的面的条件应该是()A. B. C. D.2.已知是常数,那么“”是“等式对任意恒成立”的()A.充分非必要条件 B.必要非充分条件C.充要条件 D.既不充分也不必要条件3.阅读如图所示的程序框图,运行相应的程序,输出的结果是()A.3 B.11 C.38 D.1234.下列三角方程的解集错误的是()A.方程的解集是B.方程的解集是C.方程的解集是D.方程(是锐角)的解集是5.祖暅原理也就是“等积原理”,它是由我国南北朝杰出的数学家祖冲之的儿子祖暅首先提出来的.祖暅原理的内容是:“幂势既同,则积不容异”,“势”即是高,“幂”是面积.意思是,如果夹在两平行平面间的两个几何体,被平行于这两个平行平面的平面所截,如果两个截面的面积总相等,那么这两个几何体的体积相等.已知,两个平行平面间有三个几何体,分别是三棱锥、四棱锥、圆锥(高度都是h),其中:三棱锥的体积为V,四棱锥的底面是边长为a的正方形,圆锥的底面半径为r,现用平行于这两个平面的平面去截三个几何体,如果得到的三个截面面积总相等,那么,下面关系式正确的是()A.,, B.,,C.,, D.,,6.已知函数,且的图象向左平移个单位后所得的图象关于坐标原点对称,则的最小值为()A. B. C. D.7.正四棱锥的侧棱长与底面边长都是1,则侧棱与底面所成的角为()A.75°B.60°C.45°D.30°8.函数的单调增区间是()A. B.C. D.9.已知实数满足,那么的最小值为(
)A. B. C. D.10.集合,,则=()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若直线始终平分圆的周长,则的最小值为________12.设满足不等式组,则的最小值为_____.13.和2的等差中项的值是______.14.己知中,角所対的辻分別是.若,=,,则=______.15.若正四棱锥的所有棱长都相等,则该棱锥的侧棱与底面所成的角的大小为____.16.如图,为内一点,且,延长交于点,若,则实数的值为_______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知.(1)求的坐标;(2)设,求数列的通项公式;(3)设,,其中为常数,,求的值.18.甲、乙两台机床同时加工直径为10cm的零件,为了检验零件的质量,从零件中各随机抽取6件测量,测得数据如下(单位:mm):甲:99,100,98,100,100,103;乙:99,100,102,99,100,100.(1)分别计算上述两组数据的平均数和方差(2)根据(1)的计算结果,说明哪一台机床加工的零件更符合要求.19.已知函数.(I)当时,求不等式的解集;(II)若关于的不等式有且仅有一个整数解,求正实数的取值范围.20.(1)设,直接用任意角的三角比定义证明:.(2)给出两个公式:①;②.请仅以上述两个公式为已知条件证明:.21.的内角、、的对边分别为、、,且.(Ⅰ)求角;(Ⅱ)若,且边上的中线的长为,求边的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
根据输出值和代码,可得输出的最高项的值,进而结合当型循环结构的特征得判断框内容.【详解】根据循环体,可知因为输出的值为100,所以由等差数列求和公式可知求和到19停止,结合当型循环结构特征,可知满足条件时返回执行循环体,因而判断框内的内容为,故选:D.【点睛】本题考查了当型循环结构的代码应用,根据输出值选择条件,属于基础题.2、B【解析】
由辅助角公式结合条件得出、的值,由结合同角三角函数得出、的值,于此可得出结论.【详解】由可得或,由辅助角公式,其中,.因此,“”是“等式对任意恒成立”的必要非充分条件,故选B.【点睛】本题考查必要不充分条件的判断,考查同角三角函数的基本关系以及辅助角公式的应用,考查推理能力,属于中等题.3、B【解析】试题分析:通过框图的要求;将第一次循环的结果写出,通过判断框;再将第二次循环的结果写出,通过判断框;输出结果.解;经过第一次循环得到a=12+2=3经过第一次循环得到a=32+2=11不满足判断框的条件,执行输出11故选B点评:本题考查程序框图中的循环结构常采用将前几次循环的结果写出找规律.4、B【解析】
根据余弦函数的性质可判断B是错误的.【详解】因为,故无解,故B错.对于A,的解集为,故A正确.对于C,的解集是,故C正确.对于D,,.因为为锐角,,所以或或,所以或或,故D正确.故选:B.【点睛】本题考查三角方程的解,注意对于三角方程,我们需掌握有解的条件和其通解公式,而给定范围上的解,需结合整体的范围来讨论,本题属于基础题.5、D【解析】
由祖暅原理可知:三个几何体的体积相等,根据椎体体积公式即可求解.【详解】由祖暅原理可知:三个几何体的体积相等,则,解得,由,解得,所以.故选:D【点睛】本题考查了椎体的体积公式,需熟记公式,属于基础题.6、C【解析】
由函数图像的平移变换得的图象向左平移个单位,得到,再结合三角函数的性质运算即可得解.【详解】解:,将的图象向左平移个单位,得到,因为平移后图象关于对称,所以,可得,,,,因为,所以的最小值为,故选C.【点睛】本题考查了函数图像的平移变换及三角函数的性质,属基础题.7、C【解析】如图:是底面中心,是侧棱与底面所成的角;在直角中,故选C8、D【解析】
化简函数可得y=2sin(2x),把“2x”作为一个整体,再根据正弦函数的单调增区间,求出x的范围,即是所求函数的增区间.【详解】,由2kπ≤2x2kπ得,kπx≤kπ(k∈z),∴函数的单调增区间是[kπ,kπ](k∈z),故选D.【点睛】本题考查了正弦函数的单调性应用,一般的做法是利用整体思想,根据正弦函数(余弦函数)的性质进行求解.9、A【解析】
表示直线上的点到原点的距离,利用点到直线的距离公式求得最小值.【详解】依题意可知表示直线上的点到原点的距离,故原点到直线的距离为最小值,即最小值为,故选A.【点睛】本小题主要考查点到直线的距离公式,考查化归与转化的数学思想方法,属于基础题.10、C【解析】
根据交集定义直接求解可得结果.【详解】根据交集定义知:故选:【点睛】本题考查集合运算中的交集运算,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、9【解析】
平分圆的直线过圆心,由此求得的等量关系式,进而利用基本不等式求得最小值.【详解】由于直线始终平分圆的周长,故直线过圆的圆心,即,所以.【点睛】本小题主要考查直线和圆的位置关系,考查利用基本不等式求最小值,属于基础题.12、-6【解析】作出可行域,如图内部(含边界),作直线,当向下平移时,减小,因此当过点时,为最小值.13、【解析】
根据等差中项性质求解即可【详解】设等差中项为,则,解得故答案为:【点睛】本题考查等差中项的求解,属于基础题14、1【解析】
应用余弦定理得出,再结合已知等式配出即可.【详解】∵,即,∴,①又由余弦定理得,②,②-①得,∴,∴.故答案为1.【点睛】本题考查余弦定理,掌握余弦定理是解题关键,解题时不需要求出的值,而是用整体配凑的方法得出配凑出,这样可减少计算.15、【解析】
先作出线面角,再利用三角函数求解即可.【详解】如图,设正四棱锥的棱长为1,作在底面的射影,则为与底面所成角,为正方形的中心,,,,故答案为.【点睛】本题考查线面角,考查学生的计算能力,作出线面角是关键.属于基础题.16、【解析】
由,得,可得出,再利用、、三点共线的向量结论得出,可解出实数的值.【详解】由,得,可得出,由于、、三点共线,,解得,故答案为.【点睛】本题考查三点共线问题的处理,解题的关键就是利用三点共线的向量等价条件的应用,考查运算求解的能力,属于中等题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2);(3)当时,;当或时,.【解析】
(1)利用题中定义结合平面向量加法的坐标运算可得出结果;(2)利用等差数列的求和公式和平面向量加法的坐标运算可得出数列的通项公式;(3)先计算出的表达式,然后分、、三种情况计算出的值.【详解】(1)由题意得;(2);(3).①当时,;②当时,;③当时,.【点睛】本题考查平面向量坐标的线性运算,同时也考查等差数列求和以及数列极限的运算,计算时要充分利用数列极限的运算法则进行求解,综合性较强,属于中等题.18、(1)见解析;(2)乙机床加工的零件更符合要求.【解析】
(1)直接由平均数和方差的计算公式代入数据进行计算即可.
(2)由平均数和方差各自说明数据的特征,做出判断.【详解】(1),,,.(2)因为,,说明甲、乙机床加工的零件的直径长度的平均值相同.且甲机床加工的零件的直径长度波动比较大,
因此乙机床加工的零件更符合要求.【点睛】本题考查计算数据的平均数和方差以及根据数据的平均数和方差做出相应的判断,属于基础题.19、(I);(II),或【解析】
(I)直接解不等式得解集;(II)对a分类讨论解不等式分析找到a满足的不等式,解不等式即得解.【详解】(I)当时,不等式为,不等式的解集为,所以不等式的解集为;(II)原不等式可化为,①当,即时,原不等式的解集为,不满足题意;②当,即时,,此时,所以;③当,即时,,所以只需,解得;综上所述,,或.【点睛】本题主要考查一元二次不等式的解法和解集,意在考查学生对这些知识的理解掌握水平和分析推理能力.20、(1)证明见解析(2)证明见解析【解析】
(1)直接利用任意角的三角函数的定义证得.(2)由已知条件利用诱导公式,证明.【详解】解:(1)将角的顶点置于平面直角坐标系的原点,始边与轴的正半轴重合,设角终边一点(非原点),其坐标为.∵,∴,.(2)由于,将换成后,就有即,.【点睛】本题主要考查任意角的三角
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 杭州小区车位租赁合同范本
- 社交属性在提升线上教育用户体验中的作用
- 用户体验在办公自动化中的实践
- 技术研发与转让服务合同2025
- 2024-2025学年高中地理反馈评价六旅游安全防范含解析鲁教版选修3
- 2024-2025学年新教材高中历史第五单元晚清时期的内忧外患与救亡图存第18课挽救民族危亡的斗争学案新人教版必修中外历史纲要上1
- 2024-2025学年新教材高中生物课时双测过关二十六动物细胞的有丝分裂与观察根尖分生组织细胞的有丝分裂含解析新人教版必修第一册
- 校企合作下的双师型教师队伍建设
- Unit 2 Lesson 12教学设计 2024-2025学年冀教版八年级英语上册
- 社交媒体在品牌公关传播中的创新应用
- 2024年社会工作者(中级)-社会综合能力考试历年真题可打印
- 原发性肺癌临床路径
- 九年级化学下册 第12单元 化学与生活教案 (新版)新人教版
- 后腹腔镜下输尿管切开取石术
- 二手车购买收据合同范本
- 2022版义务教育英语课程标准整体解读课件
- 01 H5入门知识课件
- 2024年安全生产网络知识竞赛题库及答案(共五套)
- 2024年实验小学大队委竞选笔试试题题库
- 学校办公室卫生制度
- 医学生理学智慧树知到答案2024年德州学院
评论
0/150
提交评论