2025届湖南省衡阳八中、澧县一中高一下数学期末质量跟踪监视模拟试题含解析_第1页
2025届湖南省衡阳八中、澧县一中高一下数学期末质量跟踪监视模拟试题含解析_第2页
2025届湖南省衡阳八中、澧县一中高一下数学期末质量跟踪监视模拟试题含解析_第3页
2025届湖南省衡阳八中、澧县一中高一下数学期末质量跟踪监视模拟试题含解析_第4页
2025届湖南省衡阳八中、澧县一中高一下数学期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届湖南省衡阳八中、澧县一中高一下数学期末质量跟踪监视模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.连续抛掷一枚质地均匀的硬币10次,若前4次出现正面朝上,则第5次出现正面朝上的概率是()A. B. C. D.2.椭圆以轴和轴为对称轴,经过点(2,0),长轴长是短轴长的2倍,则椭圆的方程为()A. B.C.或 D.或3.在中,角、、所对的边分别为、、,如果,则的形状是()A.等腰三角形 B.等腰直角三角形C.等腰三角形或直角三角形 D.直角三角形4.已知,则()A. B. C. D.5.如图,矩形ABCD中,AB=2,AD=1,P是对角线AC上一点,,过点P的直线分别交DA的延长线,AB,DC于点M,E,N.若(m>0,n>0),则2m+3n的最小值是()A. B.C. D.6.已知是等差数列的前项和,.若对恒成立,则正整数构成的集合是()A. B. C. D.7.对数列,若区间满足下列条件:①;②,则称为区间套.下列选项中,可以构成区间套的数列是()A.;B.C.D.8.已知,复数,若的虚部为1,则()A.2 B.-2 C.1 D.-19.中,,则()A.5 B.6 C. D.810.将所有的正奇数按以下规律分组,第一组:1;第二组:3,5,7;第三组:9,11,13,15,17;…表示n是第i组的第j个数,例如,,则()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若,则__________.(结果用反三角函数表示)12.已知,,若,则实数_______.13.方程组的增广矩阵是________.14.当实数a变化时,点到直线的距离的最大值为_______.15.已知函数的图象如图所示,则不等式的解集为______.16.函数单调递减区间是.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图所示,经过村庄有两条夹角为的公路,根据规划要在两条公路之间的区域内修建一工厂,分别在两条公路边上建两个仓库(异于村庄),要求(单位:千米),记.(1)将用含的关系式表示出来;(2)如何设计(即为多长时),使得工厂产生的噪声对居民影响最小(即工厂与村庄的距离最大)?18.已知,,且与的夹角为.(1)求在上的投影;(2)求.19.半期考试后,班长小王统计了50名同学的数学成绩,绘制频率分布直方图如图所示.根据频率分布直方图,估计这50名同学的数学平均成绩;用分层抽样的方法从成绩低于115的同学中抽取6名,再在抽取的这6名同学中任选2名,求这两名同学数学成绩均在中的概率.20.在中,角所对的边分别为.且.(1)求的值;(2)若,求的面积.21.已知圆心为的圆过点,且与直线相切于点。(1)求圆的方程;(2)已知点,且对于圆上任一点,线段上存在异于点的一点,使得(为常数),试判断使的面积等于4的点有几个,并说明理由。

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】

抛掷一枚质地均匀的硬币有两种情况,正面朝上和反面朝上的概率都是,与拋掷次数无关.【详解】解:抛掷一枚质地均匀的硬币,有正面朝上和反面朝上两种可能,概率均为,与拋掷次数无关.故选:D.【点睛】本题考查了概率的求法,考查了等可能事件及等可能事件的概率知识,属基础题.2、C【解析】

由于椭圆长轴长是短轴长的2倍,即,又椭圆经过点(2,0),分类讨论,即可求解.【详解】由于椭圆长轴长是短轴长的2倍,即,又椭圆经过点(2,0),则若焦点在x轴上,则,,椭圆方程为;若焦点在y轴上,则,,椭圆方程为,故选C.【点睛】本题主要考查了椭圆的方程的求解,其中解答中熟记椭圆的标准方程的形式,合理分类讨论是解答的关键,着重考查了推理与运算能力,属于基础题.3、C【解析】

结合正弦定理和三角恒等变换及三角函数的诱导公式化简即可求得结果【详解】利用正弦定理得,化简得,即,则或,解得或故的形状是等腰三角形或直角三角形故选:C【点睛】本题考查根据正弦定理和三角恒等变化,三角函数的诱导公式化简求值,属于中档题4、A【解析】分析:利用余弦的二倍角公式可得,进而利用同角三角基本关系,使其除以,转化成正切,然后把的值代入即可.详解:由题意得.∵∴故选A.点睛:本题主要考查了同角三角函数的基本关系和二倍角的余弦函数的公式.解题的关键是利用同角三角函数中的平方关系,完成了弦切的互化.5、C【解析】设,则又当且仅当时取等号,故选点睛:在利用基本不等式求最值的时候,要特别注意“拆,拼,凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数),“定”(不等式的另一边必须为定值),“等”(等号取得的条件)的条件才能应用,否则会出现错误.6、A【解析】

先分析出,即得k的值.【详解】因为因为所以.所以,所以正整数构成的集合是.故选A【点睛】本题主要考查等差数列前n项和的最小值的求法,意在考查学生对该知识的理解掌握水平和分析推理能力.7、C【解析】由题意,得为递增数列,为递减数列,且当时,;而与与均为递减数列,所以排除A,B,D,故选C.考点:新定义题目.8、B【解析】,所以,。故选B。9、D【解析】

根据余弦定理,可求边长.【详解】,代入数据,化解为解得或(舍)故选D.【点睛】本题考查了已知两边及其一边所对角,求另一边,这种题型用余弦定理,属于基础题型.10、C【解析】

由等差数列求和公式及进行简单的合情推理可得:2019为第1010个正奇数,设2019在第n组中,则有,,解得:n=32,又前31组共有961个奇数,则2019为第32组的第1010-961=49个数,得解.【详解】由已知有第n组有2n-1个连续的奇数,则前n组共有个连续的奇数,又2019为第1010个正奇数,设2019在第n组中,则有,,解得:n=32,又前31组共有961个奇数,则2019为第32组的第1010-961=49个数,即2019=(32,49),故选:C.【点睛】本题考查归纳推理,解题的关键是根据等差数列求和公式分析出规律,再结合数列的性质求解,属于中等题.二、填空题:本大题共6小题,每小题5分,共30分。11、;【解析】

由条件利用反三角函数的定义和性质即可求解.【详解】,则,故答案为:【点睛】本题考查了反三角函数的定义和性质,属于基础题.12、【解析】

利用平面向量垂直的数量积关系可得,再利用数量积的坐标运算可得:,解方程即可.【详解】因为,所以,整理得:,解得:【点睛】本题主要考查了平面向量垂直的坐标关系及方程思想,属于基础题.13、【解析】

理解方程增广矩阵的涵义,即可由二元线性方程组,写出增广矩阵.【详解】由题意,方程组的增广矩阵为其系数以及常数项构成的矩阵,故方程组的增广矩阵是.故答案为:【点睛】本题考查了二元一次方程组与增广矩阵的关系,需理解增广矩阵的涵义,属于基础题.14、【解析】

由已知直线方程求得直线所过定点,再由两点间的距离公式求解.【详解】由直线,得,联立,解得.直线恒过定点,到直线的最大距离.故答案为:.【点睛】本题考查点到直线距离最值的求法,考查直线的定点问题,是基础题.15、【解析】

根据函数图象以及不等式的等价关系即可.【详解】解:不等式等价为或,

则,或,

故不等式的解集是.

故答案为:.【点睛】本题主要考查不等式的求解,根据不等式的等价性结合图象之间的关系是解决本题的关键.16、【解析】

先求出函数的定义域,找出内外函数,根据同增异减即可求出.【详解】由,解得或,所以函数的定义域为.令,则函数在上单调递减,在上单调递增,又为增函数,则根据同增异减得,函数单调递减区间为.【点睛】复合函数法:复合函数的单调性规律是“同则增,异则减”,即与若具有相同的单调性,则为增函数,若具有不同的单调性,则必为减函数.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),;(2).【解析】

(1)根据正弦定理,得到,进而可求出结果;(2)由余弦定理,得到,结合题中数据,得到,取最大值时,噪声对居民影响最小,即可得出结果.【详解】(1)因为,在中,由正弦定理可得:,所以,;(2)由题意,由余弦定理可得:,又由(1)可得,所以,当且仅当,即时,取得最大值,工厂产生的噪声对居民影响最小,此时.【点睛】本题主要考查正弦定理与余弦定理的应用,熟记正弦定理与余弦定理即可,属于常考题型.18、(1)-2.(2).【解析】分析:(1)根据题中所给的条件,利用向量的数量积的定义式,求得,之后应用投影公式,在上的投影为,求得结果;(2)应用向量模的平方等于向量的平方,之后应用公式求得结果.详解:(1)在上的投影为(2)因为,,且与的夹角为所以所以点睛:该题考查的是有关向量的投影以及向量模的计算问题,在解题的过程中,涉及到的知识点有向量的数量积的定义式,投影公式,向量模的平方和向量的平方是相等的,灵活运用公式求得结果.19、(1)(2)【解析】

⑴用频率分布直方图中的每一组数据的平均数乘以对应的概率并求和即可得出结果;⑵首先可通过分层抽样确定6人中在分数段以及分数段中的人数,然后分别写出所有的基本事件以及满足题意中“两名同学数学成绩均在中”的基本事件,最后两者相除,即可得出结果.【详解】⑴由频率分布表,估计这50名同学的数学平均成绩为:;⑵由频率分布直方图可知分数低于115分的同学有人,则用分层抽样抽取6人中,分数在有1人,用a表示,分数在中的有5人,用、、、、表示,则基本事件有、、、、、、、、、、、、、、,共15个,满足条件的基本事件为、、、、、、、、、,共10个,所以这两名同学分数均在中的概率为.【点睛】本题考查了频率分布直方图以及古典概型的相关性质,解决本题的关键是对频率分布直方图的理解以及对古典概型概率的计算公式的使用,考查推理能力,是简单题.20、(1)(2)【解析】

(1)根据正弦定理求出,然后代入所求的式子即可;(2)由余弦定理求出ab=4,然后根据三角形的面积公式求出答案.【详解】(1)因为,由正弦定理,得,∴;(2)∵,由余弦定理得,即,所以,解得或(舍去),所以【点睛】本题考查了正弦定理、余弦定理等知识.在解三角形问题中常涉及正弦定理、余弦定理、三角形面积公式及同角三角函数基本关系等问题,故应综合把握.21、(1)(2)使的面积等于4的点有2个【解析】

(1)利用条件设圆的标准方程,由圆过点求t,确定圆方程.(2)设,由确定阿波罗尼斯圆方程,与圆C为同一圆,可得,求出N点的坐标,建立ON方程,,再利用面积求点P到直线的距离,判断与ON平行且距离为的两条直线与圆C的位置关系可得结论.【详解】(1)依题意可设圆心坐标为,则半径为,圆的方程可写成,因为圆过点,∴,∴,则圆的方程为。(2)由题知,直线的方程

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论