版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖北省武汉为明实验学校2025届数学高一下期末达标检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若直线l:ax+by=1(a>0,b>0)平分圆x2+y2﹣x﹣2y=0,则的最小值为()A. B.2 C. D.2.已知扇形的圆心角,弧长为,则该扇形的面积为()A. B. C.6 D.123.已知平面向量,,且,则实数的值为()A. B. C. D.4.直线的倾斜角是()A. B. C. D.5.有一个容量为200的样本,样本数据分组为,,,,,其频率分布直方图如图所示.根据样本的频率分布直方图估计样本数据落在区间内的频数为()A.48 B.60 C.64 D.726.已知函数,此函数的图象如图所示,则点的坐标是()A. B. C. D.7.已知,且,则下列不等式正确的是()A. B. C. D.8.两条直线和,,在同一直角坐标系中的图象可能是()A. B.C. D.9.在平行四边形ABCD中,,,E是CD的中点,则()A.2 B.-3 C.4 D.610.已知直线与圆交于M,N两点,若,则k的值为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.中,内角,,所对的边分别是,,,且,,则的值为__________.12.设ω为正实数.若存在a、b(π≤a<b≤2π),使得13.已知六棱锥的底面是正六边形,平面,.则下列命题中正确的有_____.(填序号)①PB⊥AD;②平面PAB⊥平面PAE;③BC∥平面PAE;④直线PD与平面ABC所成的角为45°.14.已知,且,则________.15.已知两点,则线段的垂直平分线的方程为_________.16.数列满足,则数列的前6项和为_______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.的内角A,B,C的对边分别为a,b,c,已知(1)求A;(2)若A为锐角,,的面积为,求的周长.18.已知圆经过两点,且圆心在轴上.(1)求圆的方程;(2)若直线,且截轴所得纵截距为5,求直线截圆所得线段的长度.19.已知函数.(1)求的单调递增区间;(2)求在区间上的值域.20.已知函数的部分图象如图所示.(1)求函数的解析式,并求出的单调递增区间;(2)若,求的值21.记为等差数列的前项和,已知,.(1)求的通项公式;(2)求,并求的最小值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
求得圆心,代入直线的方程,然后利用基本不等式求得的最小值.【详解】圆的圆心为,由于直线平分圆,故圆心在直线上,即,所以,当且仅当时等号成立.故选:C【点睛】本小题主要考查直线和圆的位置关系,考查利用基本不等式求最小值.2、A【解析】
可先由弧长计算出半径,再计算面积.【详解】设扇形半径为,则,,.故选:A.【点睛】本题考查扇形面积公式,考查扇形弧长公式,掌握扇形的弧长和面积公式是解题基础.3、B【解析】
先求出的坐标,再由向量共线,列出方程,即可得出结果.【详解】因为向量,,所以,又,所以,解得.故选B【点睛】本题主要考查由向量共线求参数的问题,熟记向量的坐标运算即可,属于常考题型.4、D【解析】
先求出直线的斜率,再求直线的倾斜角.【详解】由题得直线的斜率.故选:D【点睛】本题主要考查直线的斜率和倾斜角的计算,意在考查学生对该知识的理解掌握水平和分析推理能力.5、B【解析】
由,求出,计算出数据落在区间内的频率,即可求解.【详解】由,解得,所以数据落在区间内的频率为,所以数据落在区间内的频数,故选B.【点睛】本题主要考查了频率分布直方图,频率、频数,属于中档题.6、B【解析】
根据确定的两个相邻零点的值可以求出最小正周期,进而利用正弦型最小正周期公式求出的值,最后把其中的一个零点代入函数的解析式中,求出的值即可.【详解】设函数的最小正周期为,因此有,当时,,因此的坐标为:.故选:B【点睛】本题考查了通过三角函数的图象求参数问题,属于基础题.7、B【解析】
通过反例可排除;根据的单调性可知正确.【详解】当,时,,,则错误;当,时,,则错误;由单调递增可知,当时,,则正确本题正确选项:【点睛】本题考查不等关系的判断,解决此类问题常采用排除法,属于基础题.8、A【解析】
由方程得出直线的截距,逐个选项验证即可.【详解】由截距式方程可得直线的横、纵截距分别为,直线的横、纵截距分别为选项A,由的图象可得,可得直线的截距均为正数,故A正确;选项B,只有当时,才有直线平行,故B错误;选项C,只有当时,才有直线的纵截距相等,故C错误;选项D,由的图象可得,可得直线的横截距为正数,纵截距为负数,由图像不对应,故D错误;故选:A【点睛】本题考查了直线的截距式方程,需理解截距的定义,属于基础题.9、A【解析】
由平面向量的线性运算可得,再结合向量的数量积运算即可得解.【详解】解:由,,所以,,,则,故选:A.【点睛】本题考查了平面向量的线性运算,重点考查了向量的数量积运算,属中档题.10、C【解析】
先求得圆心到直线的距离,再根据圆的弦长公式求解.【详解】圆心到直线的距离为:由圆的弦长公式:得解得故选:C【点睛】本题主要考查了直线与圆的位置关系,还考查了运算求解的能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、4【解析】
利用余弦定理变形可得,从而求得结果.【详解】由余弦定理得:本题正确结果:【点睛】本题考查余弦定理的应用,关键是能够熟练应用的变形,属于基础题.12、ω∈[【解析】
由sinωa+sinωb=2⇒sinωa=sinωb=1.而[ωa,ωb]⊆[ωπ,2ωπ]【详解】由sinωa+而[ωa,ωb]⊆[ωπ,2ωπ],故已知条件等价于:存在整数ωπ当ω≥4时,区间[ωπ,2ωπ]的长度不小于4π当0<ω<4时,注意到,[ωπ故只要考虑如下几种情形:(1)ωπ≤π2<(2)ωπ≤5(3)ωπ≤9综上,并注意到ω≥4也满足条件,知ω∈[9故答案为:ω∈[【点睛】本题主要考查三角函数的图像和性质,意在考查学生对这些知识的掌握水平和分析推理能力.13、②④【解析】
利用题中条件,逐一分析答案,通过排除和筛选,得到正确答案.【详解】∵AD与PB在平面的射影AB不垂直,∴①不成立;∵PA⊥平面ABC,∴PA⊥AB,在正六边形ABCDEF中,AB⊥AE,PAAE=A,∴AB⊥平面PAE,且AB面PAB,∴平面PAB⊥平面PAE,故②成立;∵BC∥AD∥平面PAD,平面PAD平面PAE=PA,∴直线BC∥平面PAE也不成立,即③不成立.在Rt△PAD中,PA=AD=2AB,∴∠PDA=45°,故④成立.故答案为②④.【点睛】本题考查命题真假的判断,解题时要注意直线与平面成的角、直线与平面垂直的性质的合理运用,属于中档题.14、【解析】试题分析:由得:解方程组:得:或因为,所以所以不合题意,舍去所以,所以,答案应填:.考点:同角三角函数的基本关系和两角差的三角函数公式.15、【解析】
求出直线的斜率和线段的中点,利用两直线垂直时斜率之积为可得出线段的垂直平分线的斜率,然后利用点斜式可写出中垂线的方程.【详解】线段的中点坐标为,直线的斜率为,所以,线段的垂直平分线的斜率为,其方程为,即.故答案为.【点睛】本题考查线段垂直平分线方程的求解,有如下两种方法求解:(1)求出中垂线的斜率和线段的中点,利用点斜式得出中垂线所在直线方程;(2)设动点坐标为,利用动点到线段两端点的距离相等列式求出动点的轨迹方程,即可作为中垂线所在直线的方程.16、84【解析】
根据分组求和法以及等差数列与等比数列前n项和公式求解.【详解】因为,所以.【点睛】本题考查分组求和法以及等差数列与等比数列前n项和公式,考查基本分析求解能力,属基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)或;(2).【解析】
(1)由正弦定理将边化为对应角的正弦值,即可求出结果;(2)由余弦定理和三角形的面积公式联立,即可求出结果.【详解】(I)由正弦定理得,,即又,或.(II),由余弦定理得,即,而的面积为.的周长为5+.【点睛】本题主要考查正弦定理和余弦定理解三角形,属于基础题型.18、(1)(2)【解析】
(1)设圆心的坐标为,利用求出的值,可确定圆心坐标,并计算出半径长,然后利用标准方程可写出圆的方程;(2)由,得出直线的斜率与直线的斜率相等,可得出直线的斜率,再由截轴所得纵截距为,可得出直线的方程,计算圆心到直线的距离,则.【详解】(1)设圆心,则,则所以圆方程:.(2)由于,且,则,则圆心到直线的距离为:.由于,【点睛】本题考查圆的方程的求解以及直线截圆所得弦长的计算,再解直线与圆相关的问题时,可充分利用圆的几何性质,利用几何法来处理,问题的核心在于计算圆心到直线的距离的计算,在计算弦长时,也可以利用弦长公式来计算。19、(1);(2)【解析】
(1)利用两角差的余弦和诱导公式化简f(x),再求单调区间即可;(2)由结合三角函数性质求值域即可【详解】(1)令,得,的单调递增区间为;(2)由得,故而.【点睛】本题考查三角恒等变换,三角函数单调性及值域问题,熟记公式准确计算是关键,是基础题20、(1);递增区间为;(2)【解析】
(1)由图可知其函数的周期满足,从而求得,进而求得,再代入点的坐标可得值,从而求得解析式;解不等式,可得函数的单调增区间;(2)由题意可得,结合,得到,利用平方关系,求得,之后利用差角余弦公式求得结果.【详解】(1)设函数的周期为,由图可知,∴,即,∵,∴,∴,上式中代入,有,得,,即,,又∵,∴,∴,令,解得,即的递增区间为;(2),又,∴,∴;∴.【点睛】该题考查的是有关三角函数的问题,涉及到的知识点有根据图象确定函数解析式,求正弦型函数的单调区间,同角三角函数关系式,利用整体角思维,结合差角正弦公式求三角函数值,属于简单题目.21、(1)an=3n–4,(3)Sn=n3–8n,最小值为–1.【解析】分析:(1)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度年福建省高校教师资格证之高等教育心理学能力测试试卷A卷附答案
- 2024年度山西省高校教师资格证之高等教育法规每日一练试卷A卷含答案
- 四川省网约配送员职业技能竞赛理论考试题及答案
- 三年级数学计算题专项练习汇编及答案集锦
- 2024建筑施工协议代理业务规范稿
- 2024投标专用协议样本解析
- 基于网络空间安全的个人信息保护研究
- 2024年复婚二次离婚协议规范样本
- 2024专业红娘服务会员协议
- 2024年度高品质防盗门供应协议范例
- 消防安全-情系你我他
- 短视频的拍摄与剪辑
- 产品设计-浅谈智能蓝牙音响的外观创新设计
- 江苏省南京江宁联合体2023-2024学年八年级上学期期中考试英语试卷
- 快速康复外科(ERAS)护理
- 医疗机构安全检查表
- 第六章-巷道支护01
- 应急管理法律法规及国标行标清单
- 监理规划、监理细则审批表
- 香菇种植示范基地项目可行性策划实施方案
- 施工现场材料使用明细表
评论
0/150
提交评论