2025届湖北鄂州市高一数学第二学期期末达标检测试题含解析_第1页
2025届湖北鄂州市高一数学第二学期期末达标检测试题含解析_第2页
2025届湖北鄂州市高一数学第二学期期末达标检测试题含解析_第3页
2025届湖北鄂州市高一数学第二学期期末达标检测试题含解析_第4页
2025届湖北鄂州市高一数学第二学期期末达标检测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届湖北鄂州市高一数学第二学期期末达标检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.为了得到函数的图象,可以将函数的图象()A.向左平移个单位长度B.向左平移个单位长度C.向右平移个单位长度D.向右平移个单位长度2.已知等比数列的前项和为,则下列一定成立的是()A.若,则 B.若,则C.若,则 D.若,则3.若,则下列结论不正确的是()A. B. C. D.4.设向量,,则向量与的夹角为()A. B. C. D.5.《算法统宗》是中国古代数学名著,由明代数学家程大位编著,它对我国民间普及珠算和数学知识起到了很大的作用,是东方古代数学的名著,在这部著作中,许多数学问题都是以歌诀形式呈现的.“九儿问甲歌”就是其中一首:一个公公九个儿,若问生年总不知,自长排来差三岁,共年二百又零七,借问小儿多少岁,各儿岁数要谁推,这位公公年龄最小的儿子年龄为()A.8岁 B.11岁 C.20岁 D.35岁6.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其意思是“有一个人走378里,第一天健步行走,从第二天起脚痛每天走的路程是前一天的一半,走了6天后到达目的地.”请问第三天走了()A.60里 B.48里 C.36里 D.24里7.正方体中,的中点为,的中点为,则异面直线与所成的角是()A. B. C. D.8.有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫.从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为A. B. C. D.9.设集合,,则()A. B. C. D.10.如图,在正方体ABCD﹣A1B1C1D1中,给出以下四个结论:①D1C∥平面A1ABB1②A1D1与平面BCD1相交③AD⊥平面D1DB④平面BCD1⊥平面A1ABB1正确的结论个数是()A.1 B.2 C.3 D.4二、填空题:本大题共6小题,每小题5分,共30分。11.把函数的图象向左平移个单位长度,所得图象正好关于原点对称,则的最小值为________.12.在四面体A-BCD中,AB=AC=DB=DC=BC,且四面体A-BCD的最大体积为,则四面体A-BCD外接球的表面积为________.13.已知等差数列的前项和为,若,则_____14.已知等比数列{an}的前n项和为Sn,若S3=7,S6=63,则an=_____15.已知不等式x2-x-a>0的解集为x|x>3或16.已知数列满足则的最小值为__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知夹角为,且,,求:(1);(2)与的夹角.18.定义在R上的函数f(x)=|x2﹣ax|(a∈R),设g(x)=f(x+l)﹣f(x).(1)若y=g(x)为奇函数,求a的值:(2)设h(x),x∈(0,+∞)①若a≤0,证明:h(x)>2:②若h(x)的最小值为﹣1,求a的取值范围.19.已知数列前项和为,满足,(1)证明:数列是等差数列,并求;(2)设,求证:.20.已知数列,,,且.(1)设,证明数列是等比数列,并求数列的通项;(2)若,并且数列的前项和为,不等式对任意正整数恒成立,求正整数的最小值.(注:当时,则)21.已知向量,,函数.(1)求函数的单调递增区间;(2)在中,内角、、所对边的长分别是、、,若,,,求的面积.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】

试题分析:将函数的图象向右平移,可得,故选D.考点:图象的平移.2、C【解析】

设等比数列的公比为q,利用通项公式与求和公式即可判断出结论.【详解】设等比数列的公比为q,若,则,则,而与0的大小关系不确定.若,则,则与同号,则与0的大小关系不确定.故选:C【点睛】本题主要考查了等比数列的通项公式与求和公式及其性质、不等式的性质与解法,考查了推理能力与计算能力,属于中档题.3、C【解析】

A、B利用不等式的基本性质即可判断出;C利用指数函数的单调性即可判断出;D利用基本不等式的性质即可判断出.【详解】A,

∵b<a<0,∴−b>−a>0,∴,正确;B,∵b<a<0,∴,正确;C,

,因此C不正确;D,,正确,综上可知:只有C不正确,故选:C.【点睛】本题主要考查不等式的基本性质,属于基础题.解答过程注意考虑参数的正负,确定不等号的方向是解题的关键.4、C【解析】

由条件有,利用公式可求夹角.【详解】,.又又向量与的夹角的范围是向量与的夹角为.故选:C5、B【解析】

九个儿子的年龄成等差数列,公差为1.【详解】由题意九个儿子的年龄成等差数列,公差为1.记最小的儿子年龄为a1,则S9=9故选B.【点睛】本题考查等差数列的应用,解题关键正确理解题意,能用数列表示题意并求解.6、B【解析】

根据题意得出等比数列的项数、公比和前项和,由此列方程,解方程求得首项,进而求得的值.【详解】依题意步行路程是等比数列,且,,,故,解得,故里.故选B.【点睛】本小题主要考查中国古典数学文化,考查等比数列前项和的基本量计算,属于基础题.7、D【解析】

首先根据得到异面直线与所成的角就是直线与所成角,再根据即可求出答案.【详解】由图知:取的中点,连接.因为,所以异面直线与所成的角就是直线与所成角.因为,所以,.因为,所以,.所以异面直线与所成的角为.故选:D【点睛】本题主要考查异面直线所成角,平移找角为解题的关键,属于简单题.8、C【解析】选取两支彩笔的方法有种,含有红色彩笔的选法为种,由古典概型公式,满足题意的概率值为.本题选择C选项.考点:古典概型名师点睛:对于古典概型问题主要把握基本事件的种数和符合要求的事件种数,基本事件的种数要注意区别是排列问题还是组合问题,看抽取时是有、无顺序,本题从这5支彩笔中任取2支不同颜色的彩笔,是组合问题,当然简单问题建议采取列举法更直观一些.9、D【解析】试题分析:集合,集合,所以,故选D.考点:1、一元二次不等式;2、集合的运算.10、B【解析】

在①中,由,得到平面;在②中,由,得到平面;在③中,由,得到与平面相交但不垂直;在④中,由平面,得到平面平面,即可求解.【详解】由正方体中,可得:在①中,因为,平面,平面,∴平面,故①正确;在②中,∵,平面,平面,∴平面,故②错误;在③中,∵,∴与平面相交但不垂直,故③错误;在④中,∵平面,平面,∴平面平面,故④正确.故选:B.【点睛】本题主要考查了命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

根据条件先求出平移后的函数表达式为,令即可得解.【详解】由题意可得平移后的函数表达式为,图象正好关于原点对称,即,又,的最小值为.故答案为:.【点睛】本题考查了函数图像的平移以及三角函数的图像与性质,属于基础题.12、【解析】

当面ABC面与BCD垂直时,四面体A-BCD的体积最大,根据最大体积为求出四面体的边长,又△ABC和△BCD是等腰直角三角形,所以四面体A-BCD外接球的球心位于的中点,从而得到半径,即可求解.【详解】如图所示:当面ABC面与BCD垂直时,四面体A-BCD的体积最大为,又AB=AC=DB=DC=BC,所以△ABC和△BCD是等腰直角三角形,所以四面体A-BCD外接球的球心为的中点,又,解得,,,所以四面体A-BCD外接球的半径故四面体A-BCD外接球的表面积为.【点睛】本题考查多面体的外接圆及相关计算,多面体外接圆问题关键在圆心和半径.13、1.【解析】

利用等差数列前项和公式能求出的值.【详解】解:∵等差数列的前项和为,若,

故答案为:.【点睛】本题考查等差数列前项和的求法,考查等差数列的性质等基础知识,考查运算求解能力,是基础题.14、【解析】

利用等比数列的前n项和公式列出方程组,求出首项与公比,由此能求出该数列的通项公式.【详解】由题意,,不合题意舍去;当等比数列的前n项和为,即,解得,所以,故答案为:.【点睛】本题主要考查了等比数列的通项公式的求法,考查等比数列的性质等基础知识,考查运算求解能力,是基础题.15、6【解析】

由题意可知-2,3为方程x2【详解】由题意可知-2,3为方程x2-x-a=0的两根,则-2×3=-a,即故答案为:6【点睛】本题主要考查一元二次不等式的解,意在考查学生对该知识的理解掌握水平,属于基础题.16、【解析】

先利用累加法求出an=1+n2﹣n,所以,设f(n),由此能导出n=5或6时f(n)有最小值.借此能得到的最小值.【详解】解:∵an+1﹣an=2n,∴当n≥2时,an=(an﹣an﹣1)+(an﹣1﹣an﹣2)+…+(a2﹣a1)+a1=2[1+2+…+(n﹣1)]+1=n2﹣n+1且对n=1也适合,所以an=n2﹣n+1.从而设f(n),令f′(n),则f(n)在上是单调递增,在上是递减的,因为n∈N+,所以当n=5或6时f(n)有最小值.又因为,,所以的最小值为故答案为【点睛】本题考查了利用递推公式求数列的通项公式,考查了累加法.还考查函数的思想,构造函数利用导数判断函数单调性.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】试题分析:(1)先求模的平方将问题转化为向量的数量积问题.(2)根据数量积公式即可求得两向量的夹角.(1),,所以.(2)设与的夹角为.则,因为,所以.考点:1向量的数量积;2向量的模长.18、(1)a=1(2)①证明见解析②(1,+∞)【解析】

(1)根据函数是定义在上的奇函数,令,即可求出的值;(2)①先去绝对值,再把分离常数即可证明;②根据的最小值为,分和两种情况讨论即可得出的取值范围.【详解】(1)∵g(x)=|(x+1)2﹣a(x+1)|﹣|x2﹣ax|,一方面,由g(0)=0,得|1﹣a|=0,a=1,另一方面,当a=1时,g(x)=|(x+1)2﹣a(x+1)|﹣|x2﹣x|=|x2+x|﹣|x2﹣x|,所以,g(﹣x)=|x2﹣x|﹣|x2+x|=﹣g(x),即g(x)是奇函数.综上可知a=1.(2)(i)∵a≤0,x>0,x+1>0,所以h(x)2,∵1﹣a>0,x>0,∴h(x)>2.(ii)由(i)知,a>0,情形1:a∈(0,1],此时当x∈(a,+∞)时,有2,当x∈(0,a]时,有h(x),由上可知此时h(x)>0不合题意.情形2:a∈(1,+∞)时,当x∈(0,a﹣1)时,有h(x),当x∈[a﹣1,a)时,有h(x)当x∈[a,+∞)时,有h(x),从而可知此时h(x)的最小值是﹣1,综上所述,所求a的取值范围为(1,+∞).【点睛】本题考查函数奇偶性的定义求参数的值,考查去绝对值方法和分类讨论的数学思想,属于中档题.19、(1).(2)见解析.【解析】(1)由可得,当时,,两式相减可是等差数列,结合等差数列的通项公式可求进而可求(2)由(1)可得,利用裂项相消法可求和,即可证明.试题分析:(1)(2)试题解析:(1)由知,当即所以而故数列是以1为首项,1为公差的等差数列,且(2)因为所以考点:数列递推式;等差关系的确定;数列的求和20、(1)证明见解析,(2)10【解析】

(1)根据等比数列的定义,结合题中条件,计算,,即可证明数列是等比数列,求出;再根据累加法,即可求出数列的通项;(2)根据题意,得到,分别求出,当,用放缩法得,根据裂项相消法求,进而可求出结果.【详解】(1)证明:,而∴是以4为首项2为公比的等比数列,,∴即,,所以,,......,,以上各式相加得:;∴;(2)由(1)得:,,,,,由已知条件知当时,,即∴,而综上所述得最小值为10.【点睛】本题主要考查证明数列为等比数列,求数列的通项公式,以及数列的应用,熟记等比数列的概念,累加法求数列的通项公式,以及裂项相消法求数列的和等即可,属于常考题型.21、(1)的增区间是,(2)【解析】

(1)利用平面向量数量

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论