江苏省江阴市普通高中2025届高一数学第二学期期末统考试题含解析_第1页
江苏省江阴市普通高中2025届高一数学第二学期期末统考试题含解析_第2页
江苏省江阴市普通高中2025届高一数学第二学期期末统考试题含解析_第3页
江苏省江阴市普通高中2025届高一数学第二学期期末统考试题含解析_第4页
江苏省江阴市普通高中2025届高一数学第二学期期末统考试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省江阴市普通高中2025届高一数学第二学期期末统考试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知一组正数的平均数为,方差为,则的平均数与方差分别为()A. B. C. D.2.设,且,则的最小值为()A. B. C. D.3.下列函数中,是偶函数且在区间上是增函数的是()A. B.C. D.4.已知各项均为正数的等比数列,若,则的值为()A.-4 B.4 C. D.05.如右图所示的直观图,其表示的平面图形是(A)正三角形(B)锐角三角形(C)钝角三角形(D)直角三角形6.记为等差数列的前n项和.若,,则等差数列的公差为()A.1 B.2 C.4 D.87.已知集合A=-1,A.-1,  0,  18.函数的定义域是()A. B.C. D.9.已知,则的最小值为A.3 B.4 C.5 D.610.如果a<b<0,则下列不等式成立的是()A. B.a2<b2 C.a3<b3 D.ac2<bc2二、填空题:本大题共6小题,每小题5分,共30分。11.已知为直线,为平面,下列四个命题:①若,则;②若,则;③若,则;④若,则.其中正确命题的序号是______.12.已知一个铁球的体积为,则该铁球的表面积为________.13.下列结论中:①②函数的图像关于点对称③函数的图像的一条对称轴为④其中正确的结论序号为______.14.已知函数,若,且,则__________.15.在平面直角坐标系中,圆的方程为.若直线上存在一点,使过所作的圆的两条切线相互垂直,则实数的取值范围是______.16.在等差数列中,,,则公差______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某校从高一(1)班和(2)班的某次数学考试的成绩中各随机抽取了6份数学成绩组成一个样本,如茎叶图所示(试卷满分为100分)(1)试计算这12份成绩的中位数;(2)用各班的样本方差比较两个班的数学学习水平,哪个班更稳定一些?18.在直角坐标系中,,,点在直线上.(1)若三点共线,求点的坐标;(2)若,求点的坐标.19.的内角的对边分别为.(1)求证:;(2)在边上取一点P,若.求证:.20.在等差数列{an}中,a1=1,公差d≠0,且a1,a2,a5是等比数列{bn}的前三项.(1)求数列{an}和{bn}的通项公式;(2)设cn=an·bn,求数列{cn}的前n项和Sn.21.在平面直角坐标系xOy中,曲线与x轴交于不同的两点A,B,曲线Γ与y轴交于点C.(1)是否存在以AB为直径的圆过点C?若存在,求出该圆的方程;若不存在,请说明理由;(2)求证:过A,B,C三点的圆过定点,并求出该定点的坐标.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

根据平均数的性质和方差的性质即可得到结果.【详解】根据平均数的线性性质,以及方差的性质:将一组数据每个数扩大2倍,且加1,则平均数也是同样的变化,方差变为原来的4倍,故变换后数据的平均数为:;方差为4.故选:C.【点睛】本题考查平均数和方差的性质,属基础题.2、D【解析】

本题首先可将转化为,然后将其化简为,最后利用基本不等式即可得出结果.【详解】,当且仅当,即时成立,故选D.【点睛】本题考查利用基本不等式求最值,基本不等式公式为,考查化归与转化思想,是简单题.3、A【解析】

逐一分析选项,得到答案.【详解】A.是偶函数,并且在区间时增函数,满足条件;B.不是偶函数,并且在上是减函数,不满足条件;C.是奇函数,并且在区间上时减函数,不满足条件;D.是偶函数,在区间上是减函数,不满足条件;故选A.【点睛】本题考查了函数的基本性质,属于基础题型.4、B【解析】

根据等比中项可得,再根据,即可求出结果.【详解】由等比中项可知,,又,所以.故选:B.【点睛】本题主要考查了等比中项的性质,属于基础题.5、D【解析】略6、B【解析】

利用等差数列的前n项和公式、通项公式列出方程组,能求出等差数列{an}的公差.【详解】∵为等差数列的前n项和,,,∴,解得d=2,a1=5,∴等差数列的公差为2.故选:B.【点睛】本题考查等差数列的公差,此类问题根据题意设公差和首项为d、a1,列出方程组解出即可,属于基础题.7、B【解析】

直接利用交集运算得到答案.【详解】因为A=-1,  故答案选B【点睛】本题考查了交集运算,属于简单题.8、A【解析】

利用复合函数求定义域的方法求出函数的定义域.【详解】令x+(k∈Z),解得:x(k∈Z),故函数的定义域为{x|x,k∈Z}故选A.【点睛】本题考查的知识要点:正切函数的性质的应用,主要考察学生的运算能力和转换能力,属于基础题型.9、C【解析】

由,得,则,利用基本不等式,即可求解.【详解】由题意,因为,则,所以,当且仅当时,即时取等号,所以的最小值为5,故选C.【点睛】本题主要考查了基本不等式的应用,其中解答中熟记基本不等式的使用条件,合理构造是解答的关键,着重考查了推理与运算能力,属于基础题.10、C【解析】

根据a、b的范围,取特殊值带入判断即可.【详解】∵a<b<0,不妨令a=﹣2,b=﹣1,则,a2>b2所以A、B不成立,当c=0时,ac2=bc2所以D不成立,故选:C.【点睛】本题考查了不等式的性质,考查特殊值法进行排除的应用,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、③④【解析】

①和②均可以找到不符合题意的位置关系,则①和②错误;根据线面垂直性质定理和空间中的平行垂直关系可知③和④正确.【详解】若,此时或,①错误;若,此时或异面,②错误;由线面垂直的性质定理可知,若,则,③正确;两条平行线中的一条垂直于一个平面,则另一条直线必垂直于该平面,可知④正确本题正确结果:③④【点睛】本题考查空间中的平行与垂直关系相关命题的判断,考查学生对于平行与垂直的判定和性质的掌握情况.12、.【解析】

通过球的体积求出球的半径,然后求出球的表面积.【详解】球的体积为球的半径球的表面积为:故答案为:【点睛】本题考查球的表面积与体积的求法,考查计算能力,属于基础题.13、①③④【解析】

由两角和的正切公式的变形,化简可得所求值,可判断①正确;由正切函数的对称中心可判断②错误;由余弦函数的对称轴特点可判断③正确;由同角三角函数基本关系式和辅助角公式、二倍角公式和诱导公式,化简可得所求值,可判断④正确.【详解】①,故①正确;②函数的对称中心为,,则图象不关于点对称,故②错误;③函数,由为最小值,可得图象的一条对称轴为,故③正确;④,故④正确.【点睛】本题主要考查三角函数的图象和性质应用以及三角函数的恒等变换,意在考查学生的化简运算能力.14、2【解析】不妨设a>1,

则令f(x)=|loga|x-1||=b>0,

则loga|x-1|=b或loga|x-1|=-b;

故x1=-ab+1,x2=-a-b+1,x3=a-b+1,x4=ab+1,

故故答案为2点睛:本题考查了绝对值方程及对数运算的应用,同时考查了指数的运算,注意计算的准确性.15、【解析】试题分析:记两个切点为,则由于,因此四边形是正方形,,圆标准方程为,,,于是圆心直线的距离不大于,,解得.考点:直线和圆的位置关系.16、3【解析】

根据等差数列公差性质列式得结果.【详解】因为,,所以.【点睛】本题考查等差数列公差,考查基本分析求解能力,属基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)80;(2)(1)班.【解析】

(1)从茎叶图可直接得到答案;(2)通过方差公式计算出两个半的方差,方差更小的更稳定.【详解】(1)从茎叶图中可以看到,这12份成绩按从小到大排列,第6个是78,第7个是82,所以中位数为.(2)由表中数据,易得(1)班的6份成绩的平均数,(2)班的6份成绩的平均数,所以(1)班的6份成绩的方差为;(2)班的6份成绩的方差为.所以有,说明(1)班成绩波动较小,(2)班两极分化较严重些,所以(1)班成绩更稳定.【点睛】本题主要考查中位数,平均数,方差的相关计算和性质,意在考查学生的计算能力及分析能力,难度不大.18、(1);(2).【解析】

(1)三点共线,则有与共线,由向量共线的坐标运算可得点坐标;(2),则,由向量数量积的坐标运算可得【详解】设,则,(1)因为三点共线,所以与共线,所以,,点的坐标为.(2)因为,所以,即,,点的坐标为.【点睛】本题考查向量共线和向量垂直的坐标运算,属于基础题.19、(1)详见解析;(2)详见解析.【解析】

(1)余弦定理的证明其实在课本就直接给出过它向量方法的证明,通过,等向量模长相等就可,当然我们还可以通过坐标的运算完成(如方法二)(2)通过点P,将三角形分割,这种题中多注意几个相等(公共边相等,)我们可以得到相对应的等量关系,完成本题.【详解】(1)证法一:如图,即证法二:已知中所对边分别为,以为原点,所在直线为轴建立直角坐标系,则,所以(2)令,由余弦定理得:,因为所以所以所以【点睛】(1)向量既有大小又有方向.在几何中是一种很重要的工具,比如三角形中,三边有大小,角度问题我们可以转化为向量夹角相关,所以很容易想到向量方法.(2)解组合三角形问题,多注重图形中一些恒等关系比如边长、角度问题.20、(1)bn=3n-1;(2)Sn=(n-1)·3n+1【解析】

(1)由a1,a2,a5是等比数列{bn}的前三项得,a22=a1·a5⇒(a1+d)2=a1·(a1+4d)··⇒a12+2a1d+d2=a12+4a1d⇒d2=2a1d,又d≠0,所以d=2a1=2,从而an=a1+(n-1)d=2n-1,则b1=a1=1,b2=a2=3,则等比数列{bn}的公比q=3,从而bn=3n-1(2)由(1)得,cn=an·bn=(2n-1)·3n-1,则Sn=1·1+3·3+5·32+7·33+…+(2n-1)·3n-1①3Sn=1·3+3·32+5·33+…+(2n-3)·3n-1+(2n-1)·3n②①-②得,-2Sn=1·1+2·3+2·32+2·33+…+2·3n-1-(2n-1)·3n=1+2×-(2n-1)·3n=-2(n-1)·3n-2··则Sn=(n-1)·3n+1.21、(1)存在,(2)证明见解析,圆方程恒过定点或【解析】

(1)将曲线Γ方程中的y=1,得x2﹣mx+2m=1.利用韦达定理求出C,通过坐标化,求出m得到所求圆的方程.(2)设过A,B,C的圆P的方程为(x﹣a)2+(y﹣b)2=r2列出方程组利用圆系方程,推出圆P方程恒过定点即可.【详解】由曲线Γ:y=x2﹣mx+2m(m∈R),令y=1,得x2﹣mx+2m=1.设A(x1,1),B(x2,1),则可得△=m2﹣8m>1,x1+x2=m,x1x2=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论