




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建省莆田市第六中学2025届高一下数学期末教学质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知向量,,,则与的夹角为()A. B. C. D.2.已知集合A={1,2,3,4},B={2,3,4,5},则A∩B中元素的个数是()A.1 B.2 C.3 D.43.若角的终边经过点,则()A. B. C. D.4.在△ABC中,三个顶点分别为A(2,4),B(﹣1,2),C(1,0),点P(x,y)在△ABC的内部及其边界上运动,则y﹣x的最小值是()A.﹣3 B.﹣1 C.1 D.35.已知平面平面,,点,,直线,直线,直线,,则下列四种位置关系中,不一定成立的是()A. B. C. D.6.向量,,若,则()A.2 B. C. D.7.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯:A.281盏 B.9盏 C.6盏 D.3盏8.如图,在中,若,,,用表示为()A. B.C. D.9.已知数列的通项公式,前n项和为,若,则的最大值是()A.5 B.10 C.15 D.2010.己知函数的最小值为,最大值为,若,则数列是()A.公差不为0的等差数列 B.公比不为1的等比数列C.常数数列 D.以上都不对二、填空题:本大题共6小题,每小题5分,共30分。11.已知正实数满足,则的值为_____________.12.在等差数列中,,,则的值为_______.13.定义运算,如果,并且不等式对任意实数x恒成立,则实数m的范围是______.14.已知圆锥的轴截面是边长为2的正三角形,则这个圆锥的表面积等于______.15.在△中,,,,则_________.16.夏季某座高山上的温度从山脚起每升高100米降低0.8度,若山脚的温度是36度,山顶的温度是20度,则这座山的高度是________米三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在四棱锥中,底面是平行四边形,平面,点,分别为,的中点,且,,.(1)证明:平面;(2)求直线与平面所成角的余弦值.18.在等比数列中,.(1)求数列的通项公式;(2)设,求数列的前项和.19.如图,在平行四边形中,,,,与的夹角为.(1)若,求、的值;(2)求的值;(3)求与的夹角的余弦值.20.在锐角三角形中,分别是角的对边,且.(1)求角的大小;(2)若,求的取值范围.21.某工厂共有200名工人,已知这200名工人去年完成的产品数都在区间(单位:万件)内,其中每年完成14万件及以上的工人为优秀员工,现将其分成5组,第1组、第2组第3组、第4组、第5组对应的区间分别为,,,,,并绘制出如图所示的频率分布直方图.(1)选取合适的抽样方法从这200名工人中抽取容量为25的样本,求这5组分别应抽取的人数;(2)现从(1)中25人的样本中的优秀员工中随机选取2名传授经验,求选取的2名工人在同一组的概率.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
直接利用向量的数量积转化求解向量的夹角即可.【详解】因为,所以与的夹角为.故选:D.【点睛】本题主要考查向量的夹角的运算,以及运用向量的数量积运算和向量的模.2、C【解析】
求出A∩B即得解.【详解】由题得A∩B={2,3,4},所以A∩B中元素的个数是3.故选:C【点睛】本题主要考查集合的交集的计算,意在考查学生对该知识的理解掌握水平,属于基础题.3、B【解析】
根据任意角的三角函数的定义,可以直接求到本题答案.【详解】因为点在角的终边上,所以.故选:B【点睛】本题主要考查利用任意角的三角函数的定义求值.4、B【解析】
根据线性规划的知识求解.【详解】根据线性规划知识,的最小值一定在的三顶点中的某一个处取得,分别代入的坐标可得的最小值是.故选B.【点睛】本题考查简单的线性规划问题,属于基础题.5、D【解析】
平面外的一条直线平行平面内的一条直线则这条直线平行平面,若两平面垂直则一个平面内垂直于交线的直线垂直另一个平面,主要依据这两个定理进行判断即可得到答案.【详解】如图所示:由于,,,所以,又因为,所以,故A正确,由于,,所以,故B正确,由于,,在外,所以,故C正确;对于D,虽然,当不一定在平面内,故它可以与平面相交、平行,不一定垂直,所以D不正确;故答案选D【点睛】本题考查线面平行、线面垂直、面面垂直的判断以及性质应用,要求熟练掌握定理是解题的关键.6、C【解析】试题分析:,,得得,故选C.考点:向量的垂直运算,向量的坐标运算.7、D【解析】
设塔的顶层共有盏灯,得到数列的公比为2的等比数列,利用等比数列的前n项公式,即可求解.【详解】设塔的顶层共有盏灯,则数列的公比为2的等比数列,所以,解得,即塔的顶层共有3盏灯,故选D.【点睛】本题主要考查了等比数列的通项公式与求和公式的应用,着重考查了推理与计算能力,属于基础题.8、C【解析】
根据向量的加减法运算和数乘运算来表示即可得到结果.【详解】本题正确选项:【点睛】本题考查根据向量的线性运算,来利用已知向量表示所求向量;关键是能够熟练应用向量的加减法运算和数乘运算法则.9、B【解析】
将的通项公式分解因式,判断正负分界处,进而推断的最大最小值得到答案.【详解】数列的通项公式当时,当或是最大值为或最小值为或的最大值为故答案为B【点睛】本题考查了前n项和为的最值问题,将其转化为通项公式的正负问题是解题的关键.10、C【解析】
先根据判别式法求出的取值范围,进而求得和的关系,再展开算出分析即可.【详解】设,则,因为,故,故二次函数,整理得,故与为方程的两根,所以为常数.故选C.【点睛】本题主要考查判别式法求分式函数范围的问题,再根据二次函数的韦达定理进行求解分析即可.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
将已知等式,两边同取以为底的对数,求出,利用换底公式,即可求解.【详解】,,,.故答案为:.【点睛】本题考查指对数之间的关系,考查对数的运算以及应用换底公式求值,属于中档题.12、.【解析】
设等差数列的公差为,根据题中条件建立、的方程组,求出、的值,即可求出的值.【详解】设等差数列的公差为,所以,解得,因此,,故答案为:.【点睛】本题考查等差数列的项的计算,常利用首项和公差建立方程组,结合通项公式以及求和公式进行计算,考查方程思想,属于基础题.13、【解析】
先由题意得到,根据题意求出的最大值,即可得出结果.【详解】由题意得到,其中,因为,所以,又不等式对任意实数x恒成立,所以.故答案【点睛】本题主要考查由不等式恒成立求参数的问题,熟记三角函数的性质即可,属于常考题型.14、【解析】
根据圆锥轴截面的定义结合正三角形的性质,可得圆锥底面半径长和高的大小,由此结合圆锥的表面积公式,能求出结果.【详解】∵圆锥的轴截面是正三角形,边长等于2∴圆锥的高,底面半径.∴这个圆锥的表面积:.故答案为.【点睛】本题给出圆锥轴截面的形状,求圆锥的表面积,着重考查了等边三角形的性质和圆锥的轴截面等基础知识,考查运算求解能力,是基础题.15、【解析】
利用余弦定理求得的值,进而求得的大小.【详解】由余弦定理得,由于,故.【点睛】本小题主要考查余弦定理解三角形,考查特殊角的三角函数值,属于基础题.16、2000【解析】
由题意得,温度下降了,再求出这个温度是由几段100米得出来的,最后乘以100即可.【详解】由题意得,这座山的高度为:米故答案为:2000【点睛】本题结合实际问题考查有理数的混合运算,解题关键是温度差里有几个0.8,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)【解析】
(1)取中点,连接,,构造平行四边形,由线线平行得到线面平行;(2)根据线面角的定义作出线面角,在直角三角形中求出数值.【详解】(1)证明:取中点,连接,,∵为中点,∴,且,又为中点,底面为平行四边形,∴,,∴,,即为平行四边形,∴,又平面,且平面,∴平面.(2)∵平面,平面,∴平面平面,过作,则平面,连结,则为直线与平面所成的夹角,由,,,得,由,得,在中,,得,在中,,∴,即直线与平面所成角的余弦值为.【点睛】这个题目考查了空间中的直线和平面的位置关系.求线面角,一是可以利用等体积计算出直线的端点到面的距离,除以线段长度就是线面角的正弦值;还可以建系,用空间向量的方法求直线的方向向量和面的法向量,再求线面角即可.18、(1)(2)【解析】
(1)利用条件求数列的首项与公比,确定所求.(2)将分组,,再利用等比数列前n项和公式求和【详解】解:(1)设等比数列的公比为,所以,由,所以,则;(2),所以数列的前项和,则数列的前项和.【点睛】本题考查等比数列的通项,分组求和法,考查计算能力,属于中档题.19、(1),;(2);(3).【解析】试题分析:(1)根据向量的运算有,可知,由模长即可求得、的值;(2)先求得向量,再根据向量的数量积及便可求得;(3)由前面的求解可得及,可利用求得向量夹角的余弦值.试题解析:(1)因为,所以即.(2)由向量的运算法则知,,所以.(3)因为与的夹角为,所以与的夹角为,又,所以..设与的夹角为,可得.所以与的夹角的余弦值为.考点:向量的运算.【思路点睛】本题主要考查向量的运算及单位向量,平面任一向量都可用两个不共线的单位向量来表示,其对应坐标就是沿单位向量方向上向量的模长;而对于向量的数量积,在得知模长及夹角的情况下,可以用两向量模长与夹角余弦三者的乘积来计算,也可转化为单位向量的数量积进行求解;而向量夹角的余弦值则经常通过向量的数量积与向量模长的比值来求得.20、(1);(2)【解析】
(1)利用正弦定理边化角,可整理求得,根据三角形为锐角三角形可确定的取值;(2)利用正弦定理可将转化为,利用两角和差正弦公式、辅助角公式整理得到,根据的范围可求得正弦型函数的值域,进而得到所求取值范围.【详解】(1)由正弦定理得:为锐角三角形,,即(2)由正弦定理得:为锐角三角形,,即【点睛】本题考查正弦定理边化角的应用、边长之和的范围的求解问题;求解边长之和范围问题的关键是能够利用正弦定理将问题转化为三角函数值域的求解问题;易错点是在求解三角函数值域时,忽略角的范围限制,造成求解错误.21、(1)第1组:2;第2组:8,;第3组:9;第4组:3;第5组:3(2)【解析】
(1)根据频率之和为列方程,解方程求得的值.然后根据分层抽样的计算方法,计算出每组抽取的人数.(2)利用列举法,结合古典概型概率计算公式,计算出所求概率.【详解】(1):,.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 出租充气皮艇合同范本
- 几人共同购房合同范本
- 电缆外贸合同范本
- 包装合同范本8篇
- 公司合同范本梳理审核
- 仓库流转合同范本
- 单位集资建房转让合同范本
- 劳防用品采购合同范本
- 出售立轴制砂机合同范本
- 出售玻璃盖板合同范本
- 电子商务运营(第二版) 课件 项目1 认识电商运营
- 冰淇淋店选址与竞争环境分析
- 领导干部离任交接表
- 储运安全检查分析(SCL)评价记录
- 人教版六年级上册道德与法治教案(5篇)
- 2024年无人驾驶环卫行业研究报告-通渠有道
- (中职)中职生创新创业能力提升教课件完整版
- 中班健康课件《我不挑食》
- 人教版(2024新版)七年级上册英语各单元重点语法知识点讲义
- 生猪屠宰兽医卫生人员考试题库答案(414道)
- 《完善中国特色社会主义法治体系》课件
评论
0/150
提交评论