版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届葫芦岛市重点中学高一下数学期末联考模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.对于不同的直线l、、及平面,下列命题中错误的是()A.若,,则 B.若,,则C.若,,则 D.若,,则2.在正四棱柱中,,,则与所成角的余弦值为()A. B. C. D.3.设,,均为正实数,则三个数,,()A.都大于2 B.都小于2C.至少有一个不大于2 D.至少有一个不小于24.已知圆柱的上、下底面的中心分别为,,过直线的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为A. B. C. D.5.在直角坐标平面上,点的坐标满足方程,点的坐标满足方程则的取值范围是()A. B. C. D.6.当时,不等式恒成立,则实数m的取值范围是()A. B. C. D.7.若在是减函数,则的最大值是A. B. C. D.8.已知锐角满足,则()A. B. C. D.9.式子的值为()A. B.0 C.1 D.10.一个体积为的正三棱柱(底面为正三角形,且侧棱垂直于底面的棱柱)的三视图如图所示,则该三棱柱的侧视图的面积为()A. B.3 C. D.12二、填空题:本大题共6小题,每小题5分,共30分。11.若关于x的不等式ax2+bx+c<0的解集是{x|x<-2或x>-1},则关于x的不等式cx2+bx+a>0的解集是____________.12.已知正三角形的边长是2,点为边上的高所在直线上的任意一点,为射线上一点,且.则的取值范围是____13.已知等差数列的前项和为,且,,则;14.在中,,,是角,,所对应的边,,,如果,则________.15.不等式的解集是_________________16.已知数列满足,则__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设函数的定义域为R,当时,,且对任意实数m、n,有成立,数列满足,且.(1)求的值;(2)若不等式对一切都成立,求实数k的最大值.18.在四棱锥P-ABCD中,四边形ABCD是正方形,PD⊥平面ABCD,且PD=AD=4,点E为线段PA的中点.(1)求证:PC∥平面BDE;(2)求三棱锥E-BCD的体积.19.如图,在矩形ABCD中,AB=3,BC=2,点M,N分别是边AB,CD上的点,且MN∥BC,.若将矩形ABCD沿MN折起使其形成60°的二面角(如图).(1)求证:平面CND⊥平面AMND;(2)求直线MC与平面AMND所成角的正弦值.20.已知.(1)当时,解不等式;(2)若,解关于x的不等式.21.在中,角的对边分别是,已知,,.(1)求的值;(2)若角为锐角,求的值及的面积.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
由平面的基本性质及其推论得:对于选项C,可能l∥n或l与n相交或l与n异面,即选项C错误,得解.【详解】由平行公理4可得选项A正确,由线面垂直的性质可得选项B正确,由异面直线所成角的定义可得选项D正确,对于选项C,若l∥α,n∥α,则l∥n或l与n相交或l与n异面,即选项C错误,故选C.【点睛】本题考查了平面中线线、线面的关系及性质定理与推论的应用,属简单题.2、A【解析】
连结,结合几何体的特征,直接求解与所成角的余弦值即可.【详解】如图所示:在正四棱柱中,=1,=2,连结,则与所成角就是中的,所以与所成角的余弦值为:==.故选A.【点睛】本题考查正四棱柱的性质,直线与直线所成角的求法,考查空间想象能力以及计算能力,属于基础题.3、D【解析】
由题意得,当且仅当时,等号成立,所以至少有一个不小于,故选D.4、B【解析】分析:首先根据正方形的面积求得正方形的边长,从而进一步确定圆柱的底面圆半径与圆柱的高,从而利用相关公式求得圆柱的表面积.详解:根据题意,可得截面是边长为的正方形,结合圆柱的特征,可知该圆柱的底面为半径是的圆,且高为,所以其表面积为,故选B.点睛:该题考查的是有关圆柱的表面积的求解问题,在解题的过程中,需要利用题的条件确定圆柱的相关量,即圆柱的底面圆的半径以及圆柱的高,在求圆柱的表面积的时候,一定要注意是两个底面圆与侧面积的和.5、B【解析】
由点的坐标满足方程,可得在圆上,由坐标满足方程,可得在圆上,则求出两圆内公切线的斜率,利用数形结合可得结果.【详解】点的坐标满足方程,在圆上,在坐标满足方程,在圆上,则作出两圆的图象如图,设两圆内公切线为与,由图可知,设两圆内公切线方程为,则,圆心在内公切线两侧,,可得,,化为,,即,,的取值范围,故选B.【点睛】本题主要考查直线的斜率、直线与圆的位置关系以及数形结合思想的应用,属于综合题.数形结合是根据数量与图形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法,尤其在解决选择题、填空题时发挥着奇特功效,大大提高了解题能力与速度.运用这种方法的关键是运用这种方法的关键是正确作出曲线图象,充分利用数形结合的思想方法能够使问题化难为简,并迎刃而解.6、A【解析】
当x>0时,不等式x2﹣mx+9>0恒成立⇔m<(x)min,利用基本不等式可求得(x)min=6,从而可得实数m的取值范围.【详解】当x>0时,不等式x2﹣mx+9>0恒成立⇔当x>0时,不等式m<x恒成立⇔m<(x)min,当x>0时,x26(当且仅当x=3时取“=”),因此(x)min=6,所以m<6,故选A.【点睛】本题考查函数恒成立问题,分离参数m是关键,考查等价转化思想与基本不等式的应用,属于中档题.7、A【解析】
分析:先确定三角函数单调减区间,再根据集合包含关系确定的最大值.详解:因为,所以由得因此,从而的最大值为,选A.点睛:函数的性质:(1).(2)周期(3)由求对称轴,(4)由求增区间;由求减区间.8、D【解析】
根据为锐角可求得,根据特殊角三角函数值可知,从而得到,进而求得结果.【详解】,又,即本题正确选项:【点睛】本题考查三角函数值的求解问题,关键是能够熟悉特殊角的三角函数值,根据角的范围确定特殊角的取值.9、D【解析】
利用两角和的正弦公式可得原式为cos(),再由特殊角的三角函数值可得结果.【详解】cos()=coscos,故选D.【点睛】本题考查两角和的余弦公式,熟练掌握两角和与差的余弦公式以及特殊角的三角函数值是解题的关键,属于基础题.10、A【解析】
根据侧视图的宽为求出正三角形的边长为4,再根据体积求出正三棱柱的高,再求侧视图的面积。【详解】侧视图的宽即为俯视图的高,即三角形的边长为4,又侧视图的面积为:【点睛】理解:侧视图的宽即为俯视图的高,即可求解本题。二、填空题:本大题共6小题,每小题5分,共30分。11、{x|-1<x<-}【解析】
观察两个不等式的系数间的关系,得出其根的关系,再由和的正负可得解.【详解】由已知可得:的两个根是和,且将方程两边同时除以,得,所以的两个根是和,且解集是故得解.【点睛】本题考查一元二次方程和一元二次不等式间的关系,属于中档题.12、【解析】
以AB所在的直线为x轴,以AB的中点为坐标原点,AB的垂线为y轴,建立平面直角坐标系,求出A.C,P,Q的坐标,运用平面向量的坐标表示和性质,求出的表达式,利用判别式法求出的取值范围.【详解】以AB所在的直线为x轴,以AB的中点为坐标原点,AB的垂线为y轴,建立平面直角坐标系,如下图所示:,设,,设,可得,由,可得即,,令,可得,当时,成立,当时,,即,,即,所以的取值范围是.【点睛】本题考查了平面向量数量积的性质和运算,考查了平面向量模的取值范围,构造函数,利用判别式法求函数的最值是解题的关键.13、1【解析】
若数列{an}为等差数列则Sm,S2m-Sm,S3m-S2m仍然成等差数列.所以S10,S20-S10,S30-S20仍然成等差数列.因为在等差数列{an}中有S10=10,S20=30,所以S30=1.故答案为1.14、【解析】
首先利用同角三角函数的基本关系求出,再利用正弦定理即可求解.【详解】在中,,,即,,,即,,,,,即,,,即,,,由正弦定理得,,,故答案为:【点睛】本题考查了同角三角函数的基本关系以及正弦定理解三角形,需熟记公式,属于基础题.15、【解析】
可先求出一元二次方程的两根,即可得到不等式的解集.【详解】由于的两根分别为:,,因此不等式的解集是.【点睛】本题主要考查一元二次不等式的求解,难度不大.16、【解析】
数列为以为首项,1为公差的等差数列。【详解】因为所以又所以数列为以为首项,1为公差的等差数列。所以所以故填【点睛】本题考查等差数列,属于基础题。三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】
(1)首先令,得:,根据得到,即是以,的等差数列,再计算即可.(2)将题意转化为,设,判断其单调性,求出最小值即可得到答案.【详解】令,得:,.所以.因为,所以.所以,.所以是以,的等差数列.所以,.(2)因为恒成立.即恒成立.设,知,且,,即,故为关于的增函数,.所以,的最大值为.【点睛】本题主要考查数列与函数的综合,利用函数的单调性是解题的关键,属于难题.18、(1)见解析(2)16【解析】
(1)证明EO∥PC得到PC∥平面BDE.(2)先证明EF就是三棱锥E-BCD的高,再利用体积公式得到三棱锥E-BCD的体积.【详解】(1)证明:连结AC交BD于O,连结EO.∵四边形ABCD是正方形,在ΔPAC中,O为AC中点,又∵E为PA中点∴EO∥PC.又∵PC⊄平面BDE,EO⊂平面BDE.∴PC∥平面BDE.(2)解:取AD中点F,连结EF.则EF∥PD且EF=1∵PD⊥平面ABCD,∴EF⊥平面ABCD,∴EF就是三棱锥E-BCD的高.在正方形ABCD中,SΔBCD∴V三棱锥【点睛】本题考查了线面平行,三棱锥的体积,意在考查学生的空间想象能力和计算能力.19、(1)见解析;(2).【解析】
(1)转化为证明MN⊥平面CND;(2)过点C作CH⊥ND与点H,则MH是MC在平面AMND内的射影,所以∠CMH即直线MC与平面AMND所成的角.【详解】(1)∵在矩形ABCD中,MN∥BC,∴MN⊥ND,MN⊥NC,又∵ND,NC是平面CND内的两条相交直线,∴MN⊥平面CND,又MN平面AMND,∴平面CND⊥平面AMND.(2)由(1)知∠CND=60°,又,AB=3,BC=2,MN∥BC,所以CN=1,DN=2,由余弦定理得,所以∠DCN=90°,过点C作CH⊥ND与点H,连接MH,则∠CMH即直线MC与平面AMND所成的角,又,所以故直线MC与平面AMND所成角的正弦值为.【点睛】本题考查面面平行证明和线面角.面面平行证明要转化为线面平行证明;求线面角关键在于作出直线在平面内的射影.20、(1)或;(2)答案不唯一,具体见解析【解析】
(1)将代入,解对应的二次不等式可得答案;
(2)对值进行分类讨论,可得不同情况下不等式的解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 沪教版三年级下册数学第二单元 用两位数乘除 测试卷含答案(达标题)
- 国画基础学教案
- 暑假的学习计划(16篇)
- 湖北省襄阳市2023-2024学年高一上学期期末考试化学试题(含答案)
- 评估服务委托合同
- 诚信承诺声明
- 详细保证书模板保证心得
- 语文大专辩论赛评分卷
- 财务收款确认书
- 质量守则系统保证书
- 辽宁省2024年中考数学试卷
- 运输组织学智慧树知到答案2024年北京交通大学
- (高清版)TDT 1071-2022 园地分等定级规程
- 2024年纳税服务条线专业知识考试题库(含答案)
- 世界各国国家代号、区号、时差
- GB 6095-2021 坠落防护 安全带(高清-现行)
- 共享单车企业内部控制反思——以ofo为例论文设计
- 运输公司营运客车承包经营管理办法
- 《小王子》阅读推荐课教学实录
- 营养保健食品工厂建设项目策划方案
- 屏原理图介绍
评论
0/150
提交评论