




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
吉林省五地六市联盟2025届高一数学第二学期期末监测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在中,为的中点,,则()A. B. C.3 D.-32.从甲、乙等5名学生中随机选出2人,则甲被选中的概率为()A. B.C. D.3.设a>0,b>0,若是和的等比中项,则的最小值为()A.6 B. C.8 D.94.直线过且在轴与轴上的截距相等,则的方程为()A. B.C.和 D.5.已知随机事件中,与互斥,与对立,且,则()A.0.3 B.0.6 C.0.7 D.0.96.在△ABC中,c=,A=75°,B=45°,则△ABC的外接圆面积为A. B.π C.2π D.4π7.设且,则下列不等式成立的是()A. B. C. D.8.已知,且,那么a,b,,的大小关系是()A. B.C. D.9.已知内角,,所对的边分别为,,且满足,则=()A. B. C. D.10.使函数是偶函数,且在上是减函数的的一个值是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.在Rt△ABC中,∠B=90°,BC=6,AB=8,点M为△ABC内切圆的圆心,过点M作动直线l与线段AB,AC都相交,将△ABC沿动直线l翻折,使翻折后的点A在平面BCM上的射影P落在直线BC上,点A在直线l上的射影为Q,则的最小值为_____.12.已知直线l过点P(-2,5),且斜率为-,则直线l的方程为________.13.若6是-2和k的等比中项,则______.14.在△ABC中,若,则△ABC的形状是____.15.某学校成立了数学,英语,音乐3个课外兴趣小组,3个小组分别有39,32,33个成员,一些成员参加了不止一个小组,具体情况如图.现随机选取一个成员,他恰好只属于2个小组的概率是____.16.如图,在等腰直角三角形ABC中,,,以AB为直径在外作半圆O,P是半圆弧AB上的动点,点Q在斜边BC上,若,则的取值范围是________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知E、F、G、H为空间四边形ABCD的边AB、BC、CD、DA上的点,且EH∥FG.求证:EH∥BD.18.如图,四棱锥中,底面,分别为的中点,.(1)证明:平面平面(2)求三棱锥的体积.19.已知.(1)当时,解不等式;(2)若不等式的解集为,求实数的值.20.已知,为第二象限角.(1)求的值;(2)求的值.21.已知圆的圆心在轴上,且经过点,.(Ⅰ)求线段AB的垂直平分线方程;(Ⅱ)求圆的标准方程;(Ⅲ)过点的直线与圆相交于、两点,且,求直线的方程.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】
本题中、长度已知,故可以将、作为基底,将向量用基底表示,从而解决问题.【详解】解:在中,因为为的中点,所以,故选A【点睛】向量数量积问题常见解题方法有1.基底法,2.坐标法.基底法首先要选择两个不共线向量作为基向量,然后将其余向量向基向量转化,然后根据数量积公式进行计算;坐标法则要建立直角坐标系,然后将向量用坐标表示,进而运用向量坐标的运算规则进行计算.2、B【解析】试题分析:从甲乙等名学生中随机选出人,基本事件的总数为,甲被选中包含的基本事件的个数,所以甲被选中的概率,故选B.考点:古典概型及其概率的计算.3、D【解析】
试题分析:由题意a>0,b>0,且是和的等比中项,即,则,当且仅当时,即时取等号.考点:重要不等式,等比中项4、B【解析】
对直线是否过原点分类讨论,若直线过原点满足题意,求出方程;若直线不过原点,在轴与轴上的截距相等,且不为0,设直线方程为将点代入,即可求解.【详解】若直线过原点方程为,在轴与轴上的截距均为0,满足题意;若直线过原点,依题意设方程为,代入方程无解.故选:B.【点睛】本题考查直线在上的截距关系,要注意过原点的直线在轴上的截距是轴上的截距的任意倍,属于基础题.5、C【解析】
由对立事件概率关系得到B发生的概率,再由互斥事件的概率计算公式求P(A+B).【详解】因为,事件B与C对立,所以,又,A与B互斥,所以,故选C.【点睛】本题考查互斥事件的概率,能利用对立事件概率之和为1进行计算,属于基本题.6、B【解析】
根据正弦定理可得2R=,解得R=1,故△ABC的外接圆面积S=πR2=π.【详解】在△ABC中,A=75°,B=45°,∴C=180°-A-B=60°.设△ABC的外接圆半径为R,则由正弦定理可得2R=,解得R=1,故△ABC的外接圆面积S=πR2=π.故选B.【点睛】本题主要考查正弦定理及余弦定理的应用以及三角形面积公式,属于难题.在解与三角形有关的问题时,正弦定理、余弦定理是两个主要依据.解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷一般来说,当条件中同时出现及、时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答.7、A【解析】项,由得到,则,故项正确;项,当时,该不等式不成立,故项错误;项,当,时,,即不等式不成立,故项错误;项,当,时,,即不等式不成立,故项错误.综上所述,故选.8、D【解析】
直接用作差法比较它们的大小得解.【详解】;;.故.故选:D【点睛】本题主要考查了作差法比较实数的大小,意在考查学生对这些知识的理解掌握水平,属于基础题.9、A【解析】
利用正弦定理以及和与差的正弦公式可得答案;【详解】∵0<A<π,∴sinA≠0由atanA=bcosC+ccosB,根据正弦定理:可得sinA•tanA=sinBcosC+sinCcosB=sin(B+C)=sinA∴•tanA=1;∴tanA,那么A;故选A.【点睛】本题考查三角形的正弦定理,,内角和定理以及和与差正弦公式的运用,考查运算能力,属于基础题.10、B【解析】
先根据辅助角公式化简,再根据奇偶性及在在上是减函数为减函数即可算出的范围。【详解】由题意得:因为是偶函数,所以,又因为在的减区间为,,在上是减函数,所以当时满足,选B.【点睛】本题主要考查了三角函数的性质:奇偶性质、单调性以及辅助角公式。型为奇函数,为偶函数。其中辅助角公式为。属于中等题。二、填空题:本大题共6小题,每小题5分,共30分。11、825【解析】
以AB,BC所在直线为坐标轴建立平面直角坐标系,设直线l的斜率为k,用k表示出|PQ|,|AQ|,利用基本不等式得出答案.【详解】过点M作△ABC的三边的垂线,设⊙M的半径为r,则r2,以AB,BC所在直线为坐标轴建立平面直角坐标系,如图所示,则M(2,2),A(0,8),因为A在平面BCM的射影在直线BC上,所以直线l必存在斜率,过A作AQ⊥l,垂足为Q,交直线BC于P,设直线l的方程为:y=k(x﹣2)+2,则|AQ|,又直线AQ的方程为:yx+8,则P(8k,0),所以|AP|8,所以|PQ|=|AP|﹣|AQ|=8,所以,①当k>﹣3时,4(k+3)25≥825,当且仅当4(k+3),即k3时取等号;②当k<﹣3时,则4(k+3)23≥823,当且仅当﹣4(k+3),即k3时取等号.故答案为:825【点睛】本题考查了考查空间距离的计算,考查基本不等式的运算,意在考查学生对这些知识的理解掌握水平.12、3x+4y-14=0【解析】由y-5=-(x+2),得3x+4y-14=0.13、-18【解析】
根据等比中项的性质,列出等式可求得结果.【详解】由等比中项的性质可得,,得.故答案为:-18【点睛】本题主要考查等比中项的性质,属于基础题.14、钝角三角形【解析】
由,结合正弦定理可得,,由余弦定理可得可判断的取值范围【详解】解:,由正弦定理可得,由余弦定理可得是钝角三角形故答案为钝角三角形.【点睛】本题主要考查了正弦定理、余弦定理的综合应用在三角形的形状判断中的应用,属于基础题15、【解析】
由题中数据,确定课外小组的总人数,以及恰好属于2个小组的人数,人数比即为所求概率.【详解】由题意可得,课外小组的总人数为,恰好属于2个小组的人数为,所以随机选取一个成员,他恰好只属于2个小组的概率是.故答案为【点睛】本题主要考查古典概型,熟记列举法求古典概型的概率即可,属于常考题型.16、【解析】
建立直角坐标系,得出的坐标,利用数量积的坐标表示得出,结合正弦函数的单调性得出的取值范围.【详解】取中点为,建立如下图所示的直角坐标系则,设,,则,则设点,则,则当,即时,取最大值当,即时,取最小值则的取值范围是故答案为:【点睛】本题主要考查了利用数量积求参数以及求正弦型函数的最值,属于较难题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、证明见解析【解析】
证明:平面,平面,且,平面,平面ABD,平面平面,
.18、(1)见证明;(2)【解析】
(1)先证明面,再证明平面平面;(2)由求解.【详解】(1)证明:由已知为的中点,且,所以,因为,所以,又因为,所以四边形为平行四边形,所以,又因为面,所以平面.在△中,因为,分别为,的中点,所以,因为,,所以面,因为,所以平面平面(2)由已知为中点,又因为,所以,因为,,,所以.【点睛】本题主要考查空间几何元素平行关系的证明,考查几何体体积的计算,意在考查学生对这些知识的理解掌握水平,属于中档题.19、(1);(2)【解析】
(1)根据求解一元二次不等式的方法直接求解;(2)根据一元二次不等式的解就是对应一元二次方程的根这一特点列方程求解.【详解】解:(1),解得.∴不等式的解集为.(2)∵的解集为,∴方程的两根为0,3,∴解得∴,的值分别为3,1.【点睛】(1)对于形如的一元二次不等式,解集对应的形式是:“两根之内”;若是,解集对应的形式是:“两根之外”;(2)一元二次不等式解集的两个端点值,是一元二次方程的两个解同时也是二次函数图象与轴交点的横坐标.20、(1);(2)【解析】
(1)根据同角三角函数平方关系即可求得结果;(2)利用同角三角函数商数关系可求得,代入两角和差正切公式可求得结果.【详解】(1)为第二象限角(2)由(1)知:【点睛】本题考查同角三角函数值的求解、两角和差正切公式的应用;易错点是忽略角所处的范围,造成三角函数值符号求解错误.21、(Ⅰ);(Ⅱ);(Ⅲ)或.【解析】
(Ⅰ)利用垂直平分关系得到斜率及中点,从而得到结果;(Ⅱ)设圆的标准方程为,结合第一问可得结果;(Ⅲ)由题意可知:圆心到直线的距离为1,分类讨论可得结果.【详解】解:(Ⅰ)设的中点为,则.由圆的性质,得,所以,得.所以线段的垂直平分线的方程是.(II)设圆的标准方程为,其中,半径为().由圆的性质,圆心在直线上,化简得.所以圆心,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030年中国餐饮美食广场行业运行现状及发展前景趋势分析报告
- 2025-2030年中国锰酸锂市场运行现状及发展前景预测报告
- 2025-2030年中国金属家具制造市场竞争格局展望及投资策略分析报告
- 2025-2030年中国过滤材料市场发展趋势规划研究报告
- 2025-2030年中国起酥油产业竞争格局规划分析报告
- 2025-2030年中国调味紫菜市场十三五规划及发展战略研究报告
- 2025-2030年中国融资租赁担保行业前景趋势调研及发展战略分析报告
- 2025-2030年中国蔬菜种植行业市场运行状况与发展规划分析报告
- 2025-2030年中国菠萝超浓缩汁行业运行状况及发展趋势分析报告
- 2025-2030年中国花岗岩荒料行业运营现状及发展趋势分析报告
- 常用数学公式大全
- 风机基础监理实施细则
- GB/T 24503-2024矿用圆环链驱动链轮
- 人教版(2024)英语七年级上册单词表
- 卫生部病历管理规定
- 4《海燕》公开课一等奖创新教学设计
- 2022年全国职业院校技能大赛赛项-ZZ-2022039戏曲表演赛项基础知识试题答案(70公开题)
- 中国高血压防治指南(2024年修订版)核心要点解读
- T-CERS 0007-2020 110 kV及以下变电站 并联型直流电源系统技术规范
- 金属焊接和切割作业教案
- 定制公司用工合同范本
评论
0/150
提交评论