2025届河北省张家口市数学高一下期末经典试题含解析_第1页
2025届河北省张家口市数学高一下期末经典试题含解析_第2页
2025届河北省张家口市数学高一下期末经典试题含解析_第3页
2025届河北省张家口市数学高一下期末经典试题含解析_第4页
2025届河北省张家口市数学高一下期末经典试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届河北省张家口市数学高一下期末经典试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知关于的不等式的解集是,则的值是()A. B. C. D.2.已知等比数列中,若,且成等差数列,则()A.2 B.2或32 C.2或-32 D.-13.已知数列满足递推关系,则()A. B. C. D.4.向量,,若,则()A.5 B. C. D.5.不等式的解集为,则不等式的解集为()A.或 B. C. D.或6.曲线与曲线的()A.长轴长相等 B.短轴长相等C.焦距相等 D.离心率相等7.《算法统宗》是中国古代数学名著,由明代数学家程大位编著,它对我国民间普及珠算和数学知识起到了很大的作用,是东方古代数学的名著,在这部著作中,许多数学问题都是以歌诀形式呈现的.“九儿问甲歌”就是其中一首:一个公公九个儿,若问生年总不知,自长排来差三岁,共年二百又零七,借问小儿多少岁,各儿岁数要谁推,这位公公年龄最小的儿子年龄为()A.8岁 B.11岁 C.20岁 D.35岁8.等比数列{an}中,a3=12A.3×10-5C.128 D.3×2-59.已知数列,如果,,,……,,……,是首项为1,公比为的等比数列,则=A. B. C. D.10.某人射击一次,设事件A:“击中环数小于4”;事件B:“击中环数大于4”;事件C:“击中环数不小于4”;事件D:“击中环数大于0且小于4”,则正确的关系是A.A和B为对立事件 B.B和C为互斥事件C.C与D是对立事件 D.B与D为互斥事件二、填空题:本大题共6小题,每小题5分,共30分。11.等差数列前9项的和等于前4项的和.若,则.12.利用数学归纳法证明不等式“”的过程中,由“”变到“”时,左边增加了_____项.13.在中,角所对的边分别为,,则____14.某中学调查了某班全部45名同学参加书法社团和演讲社团的情况,数据如下表所示(单位:人).参加书法社团未参加书法社团参加演讲社团85未参加演讲社团230若从该班随机选l名同学,则该同学至少参加上述一个社团的概率为__________.15.若角的终边经过点,则实数的值为_______.16.数列满足:,,的前项和记为,若,则实数的取值范围是________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.若,且,求的值.18.已知数列的前项和,满足.(1)若,求数列的通项公式;(2)在满足(1)的条件下,求数列的前项和的表达式;19.已知角的顶点在原点,始边与轴的非负半轴重合,终边上一点的坐标是.(1)求;(2)求;20.在ΔABC中,角A,B,C,的对边分别是a,b,c,a-bsinA+sin(1)若b=6,求sinA(2)若D、E在线段BC上,且BD=DE=EC,AE=2321.已知直线经过两条直线和的交点,且与直线垂直.(1)求直线的方程;(2)若圆的圆心为点,直线被该圆所截得的弦长为,求圆的标准方程.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】

先利用韦达定理得到关于a,b的方程组,解方程组即得a,b的值,即得解.【详解】由题得,所以a+b=7.故选:A【点睛】本题主要考查一元二次不等式的解集,意在考查学生对该知识的理解掌握水平和分析推理能力.2、B【解析】

根据等差数列与等比数列的通项公式及性质,列出方程可得q的值,可得的值.【详解】解:设等比数列的公比为q(),成等差数列,,,,解得:,,,故选B.【点睛】本题主要考查等差数列和等比数列的定义及性质,熟悉其性质是解题的关键.3、B【解析】

两边取倒数,可得新的等差数列,根据等差数列的通项公式,可得结果.【详解】由,所以则,又,所以所以数列是以2为首项,1为公比的等差数列所以,则所以故选:B【点睛】本题主要考查由递推公式得到等差数列,难点在于取倒数,学会观察,属基础题.4、A【解析】

由已知等式求出,再根据模的坐标运算计算出模.【详解】由得,解得.∴,,.故选:A.【点睛】本题考查求向量的模,考查向量的数量积,及模的坐标运算.掌握数量积和模的坐标表示是解题基础.5、A【解析】不等式的解集为,的两根为,,且,即,解得则不等式可化为解得故选6、D【解析】

首先将后面的曲线化简为标准形式,分别求两个曲线的几何性质,比较后得出选项.【详解】首先化简为标准方程,,由方程形式可知,曲线的长轴长是8,短轴长是6,焦距是,离心率,,的长轴长是,短轴长是,焦距是,离心率,所以离心率相等.故选D.【点睛】本题考查了椭圆的几何性质,属于基础题型.7、B【解析】

九个儿子的年龄成等差数列,公差为1.【详解】由题意九个儿子的年龄成等差数列,公差为1.记最小的儿子年龄为a1,则S9=9故选B.【点睛】本题考查等差数列的应用,解题关键正确理解题意,能用数列表示题意并求解.8、D【解析】

根据等比数列的通项公式得到公比,进而得到通项.【详解】设公比为q,则12q+12q=30,∴∴q=2或q=12,∴a10即3×29或故选D.【点睛】本题考查了等比数列通项公式的应用,属于简单题.9、A【解析】分析:累加法求解。详解:,,解得点睛:形如的模型,求通项公式,用累加法。10、D【解析】

根据互斥事件和对立事件的概念,进行判定,即可求解,得到答案.【详解】由题意,A项中,事件“击中环数等于4环”可能发生,所以事件A和B为不是对立事件;B项中,事件B和C可能同时发生,所以事件B和C不是互斥事件;C项中,事件“击中环数等于0环”可能发生,所以事件C和D为不是对立事件;D项中,事件B:“击中环数大于4”与事件D:“击中环数大于0且小于4”,不可能同时发生,所以B与D为互斥事件,故选D.【点睛】本题主要考查了互斥事件和对立事件的概念及判定,其中解答中熟记互斥事件和对立事件的概念,准确判定是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、10【解析】

根据等差数列的前n项和公式可得,结合等差数列的性质即可求得k的值.【详解】因为,且所以由等差数列性质可知因为所以则根据等差数列性质可知可得【点睛】本题考查了等差数列的前n项和公式,等差数列性质的应用,属于基础题.12、.【解析】

分析题意,根据数学归纳法的证明方法得到时,不等式左边的表示式是解答该题的突破口,当时,左边,由此将其对时的式子进行对比,得到结果.【详解】当时,左边,当时,左边,观察可知,增加的项数是,故答案是.【点睛】该题考查的是有关数学归纳法的问题,在解题的过程中,需要明确式子的形式,正确理解对应式子中的量,认真分析,明确哪些项是添的,得到结果.13、【解析】

利用正弦定理将边角关系式中的边都化成角,再结合两角和差公式进行整理,从而得到.【详解】由正弦定理可得:即:本题正确结果:【点睛】本题考查李用正弦定理进行边角关系式的化简问题,属于常规题.14、【解析】

直接利用公式得到答案.【详解】至少参加上述一个社团的人数为15故答案为【点睛】本题考查了概率的计算,属于简单题.15、.【解析】

利用三角函数的定义以及诱导公式求出的值.【详解】由诱导公式得,另一方面,由三角函数的定义得,解得,故答案为.【点睛】本题考查诱导公式与三角函数的定义,解题时要充分利用诱导公式求特殊角的三角函数值,并利用三角函数的定义求参数的值,考查计算能力,属于基础题.16、【解析】

因为数列有极限,故考虑的情况.又数列分两组,故分组求和求极限即可.【详解】因为,故,且,故,又,即.综上有.故答案为:【点睛】本题主要考查了数列求和的极限,需要根据题意分组求得等比数列的极限,再利用不等式找出参数的关系,属于中等题型.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、【解析】

本题首先可根据以及诱导公式得出,然后根据以及同角三角函数关系计算出,最后根据即可得出结果.【详解】因为,所以,因为,所以,因为,所以解得,.【点睛】本题考查同角三角函数关系的应用,考查的公式有、以及,考查计算能力,是简单题.18、(1);(2).【解析】

(1)已知求,利用即可求出;(2)根据数列通项公式特征,采取分组求和法和错位相减法求出【详解】(1)因为,所以,当时,,所以;当时,,即,,因为,所以,,即,当时,也符合公式.综上,数列的通项公式为.(2)因为,所以()由得,两式作差得,,即,故.【点睛】本题主要考查求数列通项的方法——公式法和构造法的应用,以及数列的求和方法——分组求和法和错位相减法的应用.19、(1),(2)【解析】

(1)求得点到原点的距离,根据三角函数的定义求值;(2)同(1)可求出,然后用诱导公式化简,再代入值计算.【详解】(1)(2),为第四象限,【点睛】本题考查三角函数的定义,考查诱导公式,属于基础题.20、(1)32+【解析】

(1)根据正弦定理化简边角关系式,可整理出余弦定理形式,得到cosB=12;再根据正弦定理求得sinC,根据同角三角函数得到cosC;根据两角和差公式求得sinA;(2)设BD=x,在【详解】(1)∵由正弦定理得:a-b整理得:a2+∵0<B<π∴B=由正弦定理bsinB=c∵b>c∴B>C∴∴(2)设BD=x,则:BE=2x,AE=2在ΔABE中,利用余弦定理AE12x2=16+4x∴BE=2,AE=23,又AB=4,即BE∴AD=【点睛】本题考查正弦

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论