版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省深圳市南山区2025届数学高一下期末检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下列结论不正确的是()A.若,,则 B.若,,则C.若,则 D.若,则2.在等差数列中,已知,数列的前5项的和为,则()A. B. C. D.3.一个几何体的三视图如图(图中尺寸单位:m),则该几何体的体积为()A. B. C. D.4.已知各项均为正数的等比数列,若,则的值为()A.-4 B.4 C. D.05.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步并不难,次日脚痛减一半,六朝才得至其关,欲问每朝行里数,请公仔细算相还”.其意思为:“有一个人走378里路,第1天健步行走,从第2天起,因脚痛每天走的路程为前一天的一半,走了6天后到达目的地,可求出此人每天走多少里路.”那么此人第5天走的路程为()A.48里 B.24里 C.12里 D.6里6.正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为()A. B. C. D.7.设,则A.-1 B.1 C.ln2 D.-ln28.某次运动会甲、乙两名射击运动员成绩如右图所示,甲、乙的平均数分别为为、,方差分别为,,则()A. B.C. D.9.在明朝程大位《算法统宗》中,有这样一首歌谣,叫浮屠增级歌:远看巍巍塔七层,红光点点倍加增;共灯三百八十一,请问层三几盏灯.这首古诗描述的浮屠,现称宝塔.本浮屠增级歌意思是:有一座7层宝塔,每层悬挂的红灯数是上一层的2倍,宝塔中共有灯381盏,问这个宝塔第3层灯的盏数有()A. B. C. D.10.已知是常数,如果函数的图像关于点中心对称,那么的最小值为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.在中,,,面积为,则________.12.设实数满足,则的最小值为_____13.在三棱锥P-ABC中,平面PAB⊥平面ABC,ΔABC是边长为23的等边三角形,其中PA=PB=14._______________.15.方程的解集是____________.16.把二进制数1111(2)化为十进制数是______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知等差数列满足,且.(1)求数列的通项;(2)求数列的前项和的最大值.18.现有一个算法框图如图所示。(1)试着将框图的过程用一个函数来表示;(2)若从中随机选一个数输入,则输出的满足的概率是多少?19.已知向量垂直于向量,向量垂直于向量.(1)求向量与的夹角;(2)设,且向量满足,求的最小值;(3)在(2)的条件下,随机选取一个向量,求的概率.20.经过长期观测得到:在交通繁忙的时段内,某公路汽车的车流量(千辆/h)与汽车的平均速度之间的函数关系式为:.(1)若要求在该段时间内车流量超过2千辆,则汽车在平均速度应在什么范围内?(2)在该时段内,若规定汽车平均速度不得超过,当汽车的平均速度为多少时,车流量最大?最大车流量为多少?21.已知方程有两根、,且,.(1)当,时,求的值;(2)当,时,用表示.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
根据不等式的性质,对选项逐一分析,由此得出正确选项.【详解】对于A选项,不等式两边乘以一个正数,不等号不改变方程,故A正确.对于B选项,若,则,故B选项错误.对于C、D选项,不等式两边同时加上或者减去同一个数,不等号方向不改变,故C、D正确.综上所述,本小题选B.【点睛】本小题主要考查不等式的性质,考查特殊值法解选择题,属于基础题.2、C【解析】
由,可求出,结合,可求出及.【详解】设数列的前项和为,公差为,因为,所以,则,故.故选C.【点睛】本题考查了等差数列的前项和,考查了等差数列的通项公式,考查了计算能力,属于基础题.3、C【解析】
根据三视图判断几何体的形状,计算即可得解.【详解】该几何体是一个半径为1的球体削去四分之一,体积为.故选:C.【点睛】本题考查了三视图的识别和球的体积计算,属于基础题.4、B【解析】
根据等比中项可得,再根据,即可求出结果.【详解】由等比中项可知,,又,所以.故选:B.【点睛】本题主要考查了等比中项的性质,属于基础题.5、C【解析】记每天走的路程里数为{an},由题意知{an}是公比的等比数列,由S6=378,得=378,解得:a1=192,∴=12(里).故选C.6、A【解析】
正四棱锥P-ABCD的外接球的球心在它的高上,记为O,PO=AO=R,,=4-R,在Rt△中,,由勾股定理得,∴球的表面积,故选A.考点:球的体积和表面积7、C【解析】
先把化为,再根据公式和求解.【详解】故选C.【点睛】本题考查对数、指数的运算,注意观察题目之间的联系.8、C【解析】试题分析:,;,,故选C.考点:茎叶图.【易错点晴】本题考查学生的是由茎叶图中的数据求平均数和方差,属于中档题目.由茎叶图观察数据,用茎表示成绩的整数环数,叶表示小数点后的数字,利用平均值公式及标准差公式求出两个样本的平均数和方差,一般平均数反映的是一组数据的平均水平,平均数越大,则该名运动员的平均成绩越高;方差式用来描述一组数据的波动大小的指标,方差越小,说明数据波动越小,即该名运动员的成绩越稳定.9、C【解析】
先根据等比数列的求和公式求出首项,再根据通项公式求解.【详解】从第1层到塔顶第7层,每层的灯数构成一个等比数列,公比为,前7项的和为381,则,得第一层,则第三层,故选【点睛】本题考查等比数列的应用,关键在于理解题意.10、C【解析】
将点的坐标代入函数的解析式,得出,求出的表达式,可得出的最小值.【详解】由于函数的图象关于点中心对称,则,,则,因此,当时,取得最小值,故选C.【点睛】本题考查余弦函数的对称性,考查初相绝对值的最小值,解题时要结合题中条件求出初相的表达式,结合表达式进行计算,考查分析问题和解决问题的能力,属于中等题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
由已知利用三角形面积公式可求c,进而利用余弦定理可求a的值,根据正弦定理即可计算求解.【详解】,,面积为,解得,由余弦定理可得:,所以,故答案为:【点睛】本题主要考查了三角形面积公式,余弦定理,正弦定理在解三角形中的应用,考查了计算能力和转化思想,属于基础题.12、1.【解析】
由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.【详解】解:由实数满足作出可行域如图,
由图形可知:.
令,化为,
由图可知,当直线过点时,直线在轴上的截距最小,有最小值为1.
故答案为:1.【点睛】本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.13、65π【解析】
本题首先可以通过题意画出图像,然后通过三棱锥的图像性质以及三棱锥的外接球的相关性质来确定圆心的位置,最后根据各边所满足的几何关系列出算式,即可得出结果。【详解】如图所示,作AB中点D,连接PD、CD,在CD上作三角形ABC的中心E,过点E作平面ABC的垂线,在垂线上取一点O,使得PO=OC。因为三棱锥底面是一个边长为23的等边三角形,E所以三棱锥的外接球的球心在过点E的平面ABC的垂线上,因为PO=OC,P、C两点在三棱锥的外接球的球面上,所以O点即为球心,因为平面PAB⊥平面ABC,PA=PB,D为AB中点,所以PD⊥平面ABCCD=CA2-ADPD=P设球的半径为r,则有PO=OC=r,OE=r(PD-OE)2+DE2=P故表面积为S=4πr【点睛】本题考查三棱锥的相关性质,主要考查三棱锥的外接球的相关性质,考查如何通过三棱锥的几何特征来确定三棱锥的外接球与半径,考查推理能力,考查化归与转化思想,是难题。14、2【解析】
利用裂项求和法将化简为,再求极限即可.【详解】令...故答案为:【点睛】本题主要考查数列求和中的列项求和,同时考查了极限的求法,属于中档题.15、【解析】
由方程可得或,然后分别解出规定范围内的解即可.【详解】因为所以或由得或因为,所以由得因为,所以综上:解集是故答案为:【点睛】方程的等价转化为或,不要把遗漏了.16、.【解析】
由二进制数的定义可将化为十进制数.【详解】由二进制数的定义可得,故答案为:.【点睛】本题考查二进制数化十进制数,考查二进制数的定义,考查计算能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)144【解析】
(1)把带入通项式即可求出公差,从而求出通项。(2)根据(1)的结果以及等差数列前项和公式即可。【详解】(1)设公差为,则则则(2)由等差数列求和公式得则所以当时,有最大值144【点睛】本题主要考查了等差数列的通项以及等差数列的前和公式,属于基础题18、(1);(2).【解析】
(1)根据输出结果的条件可得定义域;根据最终的条件结构可得到不同区间内的解析式,从而得到函数解析式;(2)分别在两段区间内求得不等式的解集,根据几何概型计算公式求得结果.【详解】(1)由程序框图可知,若要输出结果,根据条件结构可知,当时,;当时,框图可用函数来表示(2)当时,在上无解当时,在上解集为:所求概率为:【点睛】本题考查读懂程序框图的功能、几何概型中的长度型问题的求解;关键是能够根据三角函数的值域准确求解出自变量的取值范围,从而利用几何概型的知识来进行求解.19、(1);(2);(3).【解析】
(1)根据向量的垂直,转化出方程组,求解方程组即可;(2)将向量赋予坐标,求得向量对应点的轨迹方程,将问题转化为圆外一点,到圆上一点的距离的最值问题,即可求解;(3)根据余弦定理,解得,以及的临界状态时,对应的圆心角的大小,利用几何概型的概率计算公式,即可求解.【详解】(1)因为故可得,解得①②由①-②可得,解得,将其代入①可得,即将其代入②可得解得,又向量夹角的范围为,故向量与的夹角为.(2)不妨设,由可得.不妨设的起始点为坐标原点,终点为C.因此,点C落在以)为圆心,1为半径的圆上(如图).因为,即由圆的特点可知的最小值为,即:.(3)当时,因为,,满足勾股定理,故容易得.当时,假设此时点落在如图所示的F点处.如图所示.因为,由余弦定理容易得,故.所以,本题化为,在半圆上任取一点C,点C落在弧CF上的概率.由几何概型的概率计算可知:的概率即为圆心角的弧度除以,即.【点睛】本题考查向量垂直时数量积的表示,以及利用解析的手段解决向量问题的能力,还有几何概型的概率计算,涉及圆方程的求解,以及余弦定理.本题属于综合题,值得总结.20、(1)﹒(2)时,最大车流量辆.【解析】
(1)根据题意,解不等式即可求得平均速度的范围.(2)将函数解析式变形,结合基本不等式即可求得最值,及取最值时的自变量值.【详解】(1)车流量(千辆/h)与汽车的平均速度之间的函数关系式为:.则,变形可得,解得,即汽车在平均速度应在内.(2)由,、变形可得,当且仅当,即时取等号,故当汽车的平均速度,车流量最大,最大车流量为千辆/h.【点睛】本题考查了一元二次不等式的解法,由基本不等式求最值,属于基础题.21、(1);(2).【解析】
(1)由反三角函数的定义得出,,再由韦达定理结合两角和的正切公式求出的值,并求出的取值
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《防火墙技术》课件
- 《中西建筑艺术差异》课件
- 中班文明小观众课件
- 采购部门报告范文模板
- 墙砖地砖施工合同范本
- 财务管理调查报告范文
- 不同企业总结报告范文
- 毕野设计开题报告范文
- 2023年高考真题-语文(天津卷) 含答案
- 《建设之路的探索》课件
- 投标保证金交付证明
- 质量问题投诉登记、处理台账
- 小班健康活动认识五官课件
- 施工单位履约考评检查表
- 中国脓毒症及脓毒性休克急诊治疗指南
- 【中学】主题班会:关爱他人 快乐自己
- 高级别脑胶质瘤放射治疗PPT
- “不”的变调 (共10张PPT)课件
- DB32∕T 3748-2020 35kV及以下客户端变电所建设标准
- 部编版小学语文75首古诗默写专项练习
- 燃气入户安检培训PPT.ppt
评论
0/150
提交评论