版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江西省南昌市新建区第一中学2025届数学高一下期末检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在平面直角坐标系xoy中,横、纵坐标均为整数的点叫做格点,若函数的图象恰好经过个格点,则称函数为阶格点函数.下列函数中为一阶格点函数的是()A. B. C. D.2.一个人连续射击三次,则事件“至少击中两次”的对立事件是()A.恰有一次击中 B.三次都没击中C.三次都击中 D.至多击中一次3.公比为2的等比数列{}的各项都是正数,且=16,则=()A.1 B.2 C.4 D.84.《张丘建算经》中如下问题:“今有马行转迟,次日减半,疾五日,行四百六十五里,问日行几何?”根据此问题写出如下程序框图,若输出,则输入m的值为()A.240 B.220 C.280 D.2605.若,,则的终边所在的象限为()A.第一象限B.第二象限C.第三象限D.第四象限6.已知=4,=3,,则与的夹角为()A. B. C. D.7.已知函数,且此函数的图象如图所示,由点的坐标是()A. B. C. D.8.已知为的三个内角的对边,,的面积为2,则的最小值为().A. B. C. D.9.直线,,的斜率分别为,,,如图所示,则()A. B.C. D.10.执行如图所示的程序框图,则输出的s的值为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知直线:与直线:平行,则______.12.已知正三棱锥的底面边长为,侧棱长为2,则该三棱锥的外接球的表面积_____.13.设,,,,,为坐标原点,若、、三点共线,则的最小值是_______.14.设为等差数列,若,则_____.15.__________.16.已知等差数列的前项和为,若,则=_______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知,,当为何值时:(1)与垂直;(2)与平行.18.等差数列的首项为23,公差为整数,且第6项为正数,从第7项起为负数.求此数列的公差及前项和.19.已知等差数列的首项为,公差为,前n项和为,且满足,.(1)证明;(2)若,,当且仅当时,取得最小值,求首项的取值范围.20.如图所示,已知三棱锥的侧棱长都为1,底面ABC是边长为的正三角形.(1)求三棱锥的表面积;(2)求三棱锥的体积.21.已知A,B,C是的内角,a,b,c分别是其对边长,向量,,且.(1)求角的大小;(2)若,,求的面积.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】
根据题意得,我们逐个分析四个选项中函数的格点个数,即可得到答案.【详解】根据题意得:函数y=sinx图象上只有(0,0)点横、纵坐标均为整数,故A为一阶格点函数;函数没有横、纵坐标均为整数,故B为零阶格点函数;函数y=lgx的图象有(1,0),(10,1),(100,2),…无数个点横、纵坐标均为整数,故C为无穷阶格点函数;函数y=x2的图象有…(﹣1,0),(0,0),(1,1),…无数个点横、纵坐标均为整数,故D为无穷阶格点函数.故选A.【点睛】本题考查的知识点是函数的图象与图象变化,其中分析出函数的格点个数是解答本题的关键,属于中档题.2、D【解析】
根据判断的原则:“至少有个”的对立是“至多有个”.【详解】根据判断的原则:“至少击中两次”的对立事件是“至多击中一次”,故选D.【点睛】至多至少的对立事件问题,可以采用集合的补集思想进行转化.如“至少有个”则对应“”,其补集应为“”.3、A【解析】试题分析:在等比数列中,由知,,故选A.考点:等比数列的性质.4、A【解析】
根据程序框图,依次循环计算,可得输出的表达式.结合,由等比数列求和公式,即可求得的值.【详解】由程序框图可知,此时输出.所以即由等比数列前n项和公式可得解得故选:A【点睛】本题考查了循环结构程序框图的应用,等比数列求和的应用,属于中档题.5、B【解析】由一全正二正弦三正切四余弦可得的终边所在的象限为第二象限,故选B.考点:三角函数6、C【解析】
由已知中,,,我们可以求出的值,进而根据数量积的夹角公式,求出,,进而得到向量与的夹角;【详解】,,,,,所以向量与的夹角为.故选C【点睛】本题主要考查平面向量的数量积运算和向量的夹角的计算,意在考查学生对这些知识的理解掌握水平,属于基础题.7、B【解析】
先由函数图象与轴的相邻两个交点确定该函数的最小正周期,并利用周期公式求出的值,再将点代入函数解析式,并结合函数在该点附近的单调性求出的值,即可得出答案。【详解】解:由图象可得函数的周期∴,得,将代入可得,∴(注意此点位于函数减区间上)∴由可得,∴点的坐标是,故选:B.【点睛】本题考查利用图象求三角函数的解析式,其步骤如下:①求、:,;②求:利用一些关键点求出最小正周期,再由公式求出;③求:代入关键点求出初相,如果代对称中心点要注意附近的单调性。8、D【解析】
运用三角形面积公式和余弦定理,结合三角函数的辅助角公式和正弦型函数的值域最后可求出的最小值.【详解】因为,所以,即,令,可得,于是有,因此,即,所以的最小值为,故本题选D.【点睛】本题考查了余弦定理、三角形面积公式,考查了辅助角公式,考查了数学运算能力.9、A【解析】
根据题意可得出直线,,的倾斜角满足,由倾斜角与斜率的关系得出结果.【详解】解:设三条直线的倾斜角为,根据三条直线的图形可得,因为,当时,,当时,单调递增,且,故,即故选A.【点睛】本题考查了直线的倾斜角与斜率的关系,解题的关键是熟悉正切函数的单调性.10、A【解析】
模拟程序运行,观察变量值,判断循环条件可得结论.【详解】运行程序框图,,;,;,,此时满足条件,跳出循环,输出的.故选:A.【点睛】本题考查程序框图,考查循环结构,解题时只要模拟程序运行即可得结论.二、填空题:本大题共6小题,每小题5分,共30分。11、4【解析】
利用直线平行公式得到答案.【详解】直线:与直线:平行故答案为4【点睛】本题考查了直线平行的性质,属于基础题型.12、.【解析】
由题意推出球心O到四个顶点的距离相等,利用直角三角形BOE,求出球的半径,即可求出外接球的表面积.【详解】如图,∵正三棱锥A﹣BCD中,底面边长为,底面外接圆半径为侧棱长为2,BE=1,在三角形ABE中,根据勾股定理得到:高AE得到球心O到四个顶点的距离相等,O点在AE上,在直角三角形BOE中BO=R,EOR,BE=1,由BO2=BE2+EO2,得R∴外接球的半径为,表面积为:故答案为.【点睛】涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体中的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题,再利用平面几何知识寻找几何体中元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解.13、【解析】
根据三点共线求得的的关系式,利用基本不等式求得所求表达式的最小值.【详解】依题意,由于三点共线,所以,化简得,故,当且仅当,即时,取得最小值【点睛】本小题主要考查三点共线的向量表示,考查利用基本不等式求最小值,属于基础题.14、【解析】
根据等差数列的性质:在等差数列中若则即可【详解】故答案为:【点睛】本题主要考查的等差数列的性质:若则,这一性质是常考的知识点,属于基础题。15、【解析】
在分式的分子和分母上同时除以,然后利用极限的性质来进行计算.【详解】,故答案为:.【点睛】本题考查数列极限的计算,解题时要熟悉一些常见的极限,并充分利用极限的性质来进行计算,考查计算能力,属于基础题.16、【解析】
利用等差数列前项和,可得;利用等差数列的性质可得,然后求解三角函数值即可.【详解】等差数列的前项和为,因为,所以;又,所以.故答案为:.【点睛】本题考查等差数列的前项和公式和等差数列的性质的应用,熟练掌握和若,则是解题的关键.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】
根据向量坐标运算计算得到与的坐标(1)由垂直关系得到数量积为,可构造方程求得;(2)由向量平行的坐标表示可构造方程求得.【详解】,(1)由与垂直得:,解得:(2)由与平行得:,解得:【点睛】本题考查平面向量平行和垂直的坐标表示;关键是能够明确两向量垂直可得;两向量平行可得.18、,【解析】
先设等差数列的公差为,根据第6项为正数,从第7项起为负数,得到求,再利用等差数列前项和公式求其.【详解】设等差数列的公差为,因为第6项为正数,从第7项起为负数,所以,即,所以又因为所以所以【点睛】本题主要考查了等差数列的通项公式和前n项和公式,还考查了运算求解的能力,属于中档题.19、(1)证明见解析;(2)【解析】
(1)根据等差数列的前n项和公式,变形可证明为等差数列.结合条件,,可得,进而表示出.由为等差数列,表示出,化简变形后结合不等式性质即可证明.(2)将三角函数式分组,提公因式后结合同角三角函数关系式化简.再由平方差公式及正弦的和角与差角公式合并.根据条件等式,结合等差数列性质,即可求得.由,即可确定.当且仅当时,取得最小值,可得不等式组,即可得首项的取值范围.【详解】(1)证明:等差数列的前n项和为,则所以,,故为等差数列,因为,,所以,解得,因为,得故,从而.(2)而.由条件又由等差数列性质知:所以,因为,所以,那么.等差数列,当且仅当时,取得最小值.,所以.【点睛】本题考查了等差数列前n项和公式的应用,等差数列通项公式定义及变形式应用.三角函数式变形,正弦和角与差角公式的应用,不等式组的解法,综合性强,属于难题.20、(1)(2)【解析】
(1)分析得到侧面均为等腰直角三角形,再求每一个面的面积即得解;(2)先证明平面SAB,再求几何体体积.【详解】(1)如图三棱锥的侧棱长为都为1,底面为正三角形且边长为,所以侧
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度北京市商铺租赁合同涉及的消防安全问题
- 2024年度企业市场调查与分析合同
- 2024年度影视版权购买合同标的为电影版权
- 房屋租赁合同范例单张
- 电梯销售返利合同范例
- 2024年度不锈钢水箱原材料采购与供应合同
- 2024年度服装设计与销售保密协议
- 工业照明经销合同范例
- 產品釆购合同模板
- 2024年度版权质押合同:音乐作品版权质押融资
- 《中华传统文化》 课件 第七章 人间烟火-中国传统饮食文化
- 人教版高中生物选择性必修二教材答案与提示
- 心理健康讲座(课件)-小学生心理健康
- 临时道路铺设钢板施工方案
- G -B- 39800.6-2023 个体防护装备配备规范 第6部分:电力(正式版)
- 24春国家开放大学《机电一体化系统综合实训》大作业参考答案
- 英文版中国故事绘本愚公移山
- 水稻碳足迹评价技术指南
- 医院信用评价管理制度
- 黄杨宁片对心脑血管疾病的保护机制
- (正式版)HGT 20656-2024 化工供暖通风与空气调节详细设计内容和深度规定
评论
0/150
提交评论